ON THE STABILITY OF FUNCTIONAL EQUATIONS CONCERNED A MULTIPLICATIVE DERIVATION

  • LEE, EUN HWI (Department of Mathematics Jeonju University) ;
  • CHANG, ICK-SOON (Department of Mathematics Mokwon University) ;
  • JUNG, YONG-SOO (Department of Mathematics Chungnam National University)
  • Received : 2005.04.09
  • Published : 2005.06.25

Abstract

In this paper we study the Hyers-Ulam stability and the superstability of functional equations related to a multiplicative derivation.

Keywords

References

  1. Proc. Amer. Math. Soc. v.74 The stability of the equation f (x + y) = f(x)f(y) Baker, J.A.
  2. Abh. Math. Sem. Univ. Hamburg v.62 On the stability of the quadratic mappings in normed spaces Czerwik, S.
  3. Proc. Nat. Acad. Sci. v.27 On the stability of the linear functional equation Hyers, D.H.
  4. Stability of functional equations in several variables Hyers, D.H.;Isac, G.;Rassias, Th. M.
  5. Proc. Amer. Math. Soc. v.126 On the asymptoticity aspect of Hyers-Ulam stability of mappings Hyers, D.H.;Isac, G.;Rassias, Th. M.
  6. Aequationes Math. v.44 Approximate homomorphisms Hyers, D.H.;Rassias, Th. M.
  7. J. Math. Anal. Appl. v.239 On Hyers-Ulam-Rassias stability of the Pexider equation Jun, K.W.;Shin, D.S.;Kim, B.D.
  8. J. Math. Anal. Appl. v.238 A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation Lee, Y.H.;Jun, K.W.
  9. Abh.Math. Sem. Univ. Hamburg v.67 On the superstability of the functional equation $f(x^y)\;=\;yf(x) $ Jung, S.M.
  10. J. Math. Anal. Appl. v.232 Hyers-Ulam-Rassias stability of a quadratic functional equation Jung, S.M.
  11. J. Math. Anal. Appl. v.274 On the stability of the functional equation f(x + y + xy) = f(x) + f(y) + xf(y) + yf(x) Jung, Y.S.;Park, K.H.
  12. Aequationes Math. v.53 Problems 18;Report on the 34th ISFE Maksa, Gy.
  13. Aequationes Math. v.53 Remark 27;Report on the 34th ISFE Pales, Zs.
  14. Proc. Amer. Math. Soc. v.72 On the stability of the linear mapping in Banach spaces Rassias, Th. M.
  15. J. Math. Anal. Appl. v.251 On the stability of functional equations in Banach spaces Rassias, Th. M.
  16. Acta Math. Appl. v.62 On the stability of functional equations and a problem of Ulam Rassias, Th. M.
  17. Functional Equations and inequalities Rassias, Th. M.(ed.)
  18. Stability of mappings of Hyers-Ulam type Rassias, Th. M.;Tabor, J.
  19. Proc. Amer. Math. Soc. v.114 On the the behavior of mappings which does not satisfy Hyers-Ulam stability Rassias, Th. M.;Semrl, P.
  20. Journal of Natural Geometry v.1 What is left of Hyers-Ulam stability? Rassias, Th. M.;Tabor, J.
  21. Atti Accad. Sc. Torino v.117 Sull'approssimazione delle appliazioni localmente ${\delta}$-additive Skof, F.
  22. Rend. Sem. Mat. Fis. Milano v.53 Proprieta locali e approssimazione di opertori Skof, F.
  23. Aequationes Math. v.53 Remarks 20;Report on the 34th ISFE Tabor, J.
  24. Problems in Modern Mathematics, Chap. VI, Sciences Editions Ulam, S.M.