1 |
M. Bidkham, H. A. Soleiman Mezerji and M. Eshaghi Gordji, Hyers-Ulam stability of polynomial equations, Abstr. Appl. Anal., (2010), Art. ID 754120, 7 pp.
|
2 |
D. Doitchinov, On completeness in quasi-metric spaces, Topology Appl., 30(1988), 127-148.
DOI
|
3 |
N. Eghbali, Hyers-Ulam-Rassias type stability of polynomial equations, Konuralp J. Math., 4(1)(2016), 88-91.
|
4 |
P. Hitzler, Generalized metrics and topology in logic programming semantics, Ph.D. Thesis, National University of Ireland, University College Cork, 2001.
|
5 |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222-224.
DOI
|
6 |
S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011.
|
7 |
S.-M. Jung, Hyers-Ulam stability of zeros of polynomials, Appl. Math. Lett., 24(2011), 1322-1325.
DOI
|
8 |
Y. Li and L. Hua, Hyers-Ulam stability of a polynomial equation, Banach J. Math. Anal., 3(2)(2009), 86-90. 88-91.
DOI
|
9 |
G. Lu, and C. Park, Hyers-Ulam stability of general Jensen-type mappings in Banach algebras, Results Math., 66(2014), 385-404.
DOI
|
10 |
A. Najati, and A. Rahimi, A fixed point approach to the stability of a generalized Cauchy functional equation, Banach J. Math. Anal., 2(2008), 105-112.
DOI
|
11 |
C.-G. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275(2002), 711-720.
DOI
|
12 |
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(2003), 91-96.
|
13 |
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(2)(1978), 297-300.
DOI
|
14 |
J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57(3)(1989), 268-273.
DOI
|
15 |
T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(2000), 23-130.
DOI
|
16 |
M. Sarwar, M. U. Rahman, and G. Ali, Some fixed point results in dislocated quasi metric (dq-metric) spaces, Int. Math. Forum, 9(14)(2014), 677-682.
DOI
|
17 |
S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics 8, Interscience Publishers, London, UK, 1960.
|
18 |
W. Zhang, L. Hua, and Y. Li, On the Hyers-Ulam stability of operator equations in quasi-Banach algebras, Appl. Math. E-Notes, 19(2019), 141-152.
|