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STABILITY OF CYCLIC FUNCTIONAL EQUATIONS
IN BANACH MODULES OVER A C*-ALGEBRA

CHUN-GIL PARK*

ABSTRACT. We prove the Cauchy-Rassias stability of cyclic func-
tional equations in Banach modules over a unital C*-algebra.

1. Introduction

Recently, T. Trif [6, Theorem 2.1] proved that, for vector spaces V'
and W, a mapping f : V — W with f(0) = 0 satisfies the functional
equation
x + e + Tn n
1—) +n—2Ck—1 Z f(zs)

=1

e Z f($i1+"'+$ik)

k
1<i1 << <n

N p—2Ck_2f(

for all x1,---,x, € V if and only if the mapping f : V — W satisfies
the additive Cauchy equation f(x +y) = f(z) + f(y) for all z,y € V.
In [2], the author conjectured the following, and gave a partial

answer for the conjecture.

Conjecture. Let p be an integer greater than 1. A mapping f: V —
W with f(0) = 0 satisfies the functional equation

pn—l
n Tl Tpn Tpi—pt+1 + -+ Tpi
P )+(pk —p) Y f(FEE . )
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30 C. PARK

for all x1 = zpnj1, - ,Th—1 = Tpryk—1,Tk, - ,Tp» € V if and only
if the mapping f : V — W satisfies the additive Cauchy equation
flx+y) = f(z)+ f(y) for all z,y € V.

Throughout this paper, let A be a unital C*-algebra with norm
|- | and U(A) the unitary group of A. Let 4B and 4C be left Banach
A-modules with norms || - || and || - ||, respectively. Let d, r and p be
positive integers and b an integer greater than 1.

The main purpose of this paper is to prove the Cauchy-Rassias
stability of the functional equation (C) in Banach modules over a

unital C*-algebra for a special case.

2. Cyclic functional equations
In this section, we are going to solve the conjecture for a special

case.

THEOREM 2.1. A mapping f:V — W with f(0) = 0 satisfies the

functional equation

(bp)" !
T+ -+ x(bp)" Lbpi—bp+1 + -+ Lbps

bp)" f +0p(bp — 2 f

O L USL DI - )
() Ti+ -+ Tigop—2

; _ 1 7 i+bp—
(2.) =) Y ST
for all Ir1 = x(bp)n+1, L, Thp—2 = x(bp)n+bp_2,xbp_1, fe ,:E(bp)n eV

if and only if the mapping f : V. — W satisfies the additive Cauchy
equation f(z +vy) = f(x) + f(y) for all z,y € V.

Proof. Assume a mapping f : V — W satisfies (2.i). Put xp;—p41 =

X1, Thi—bi2, - Ty = Tp in (2.) for all i =1,--- ,p(bp)"~t. Then

()" F(E o — 2 () (P

b Zb s
(2.1 = (bp = 1)(bp)" Yopf(=me T
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for all z1,--- a5 € V. Put 21 = z and @9 = --- = 2 = y in (2.1).
Then we get
(top— 1oy p (2D
(2.2 == 1)(op) (L=
+ 0 ppp =R D0,

forall z,y € V. Put = 0in (2.2). Replacing z and y by —(bp—p—1)x
and pz in (2.2), respectively, we get
n x n—
(bp = 1)(bp)" f(3) = (bp = 1)(bp)" ' pf ()
for all x € V. So we get

(2.3) I

for all x € V.
By (2.3), it follows from (2.1) that

(bp — 1)p(bp)" ' flz1 4 - + a)
b

° > DT — T;
= (bp = DEp)" " 3_pf (=25 )

b .
for all @1, 2 € V. Let v; = ZmstP2n=%i for all § = 1, b,

Then we get
b
(bp — 1)p(bp)™~! Z fvi) =(bp — V)p(bp)" " fz1 + -+ + )

=(bp — 1)p(bp)" " f(v1 + -+ + w)
for all vy, - ,vp € V. Let v3 = --- = v, = 0. Then we get f(vy) +
f(v2) = f(v1 4+ vg) for all v1,v2 € V. So the mapping f : V — W
satisfies the additive Cauchy equation f(x +y) = f(z) + f(y) for all
z,y€eV.

The converse is obvious. O
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3. Stability of cyclic functional equations in Banach modules
over a (*-algebra associated with its unitary group

We are going to prove the Cauchy-Rassias stability of the functional
equation (C) in Banach modules over a unital C*-algebra associated

with its unitary group for a special case.

THEOREM 3.1. Let f: aB — AC be a mapping with f(0) = 0 for

which there exists a function ¢ : 4B®P)" — [0,00) such that

- o d o (p)tr
2 = J Jope o
()0(3:17 7x(bp) ) JZO( (bp)n’l") (10(( d ) X1, 5
, bp)"r .
(3.1) (Y zepn) <00
d rT1 + s+ TT(pp)n
IDuf (@, szl = 1 Zuf( )
r
o Topi—bp+1 + *** + Tpp;
+oplbp—2) Y uf(=E=EE - 2)
i=1
() UT; + -+ + UTitbp—2
(3. —p—1) Y e
i=1 P
< ()0(3:17 T 7x(bp)")
for all x1 = T(bp)n41>""" »Tbp—2 = L(bp)n+bp—23 Lop—15""" » T(bp)n € B

and all u € U(A). Then there exists a unique A-linear mapping
T : osB — AC such that

1
3.iii x)—T(x)]] < o(x, - ,x
(3.ii) [f(x) = T(x)]| < (bp)"(’p( )
for all x € AB.
Proof. Put w = 1 € U(A). Let 21 = -+ = x4p» = z in (3.ii).

Then we get

(bp)"r
d

II;—i-f( )+ (bp—2)(bp)" f () = (bp—1)(bp)" f(2)[| < (-, )
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for all x € 4B. So one can obtain

d (bp)™r 1

19) = Gy £

hence

= (bp)™ (

for all x € 4B. So we get

d .. p)"r
17) = Gy PHC P
' S o = pyr TN a0

for all x € 4B.
Let x be an element in 4B. For positive integers [ and m with
[ >m,

d e 0D
bp)nr) F((==)")l

—~

-1

1 d ) ) )
< (bp)n Zm( (bp)"r)J('O(( d )Jxv"' 7( d )Jx)v

1=

which tends to zero as m — oo by (3.i). So {( (bp%w)jf(( (bpgnT)jx)} is
a Cauchy sequence for all x € 4B. Since 4C is complete, the sequence
{(<bp%w)jf(((bp3%)jx)} converges for all x € 4B. We can define a
mapping T : 4B — 4C by

(32) T(a) = Jim (G

j (bp)nrj
P yia)
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for all x € 4B.
By (3.i) and (3.2), we get

||D1T(IL’1, e 7x(bp)")||

: d (bp)"r . ; (bp)"r . ;
_ j Foe o j B
i (PP (Y (a0
: d . p)"r.; (bp)"r . ;
< j gy, Iz mn) = 0
= ]ll{go((bp)n”r') (10(( d ) X1, 7( d ) x(bp) )
for all z1, - ,xppy» € aB. Hence D1T(x1,--- ,2pp)n) = 0 for all
L1, ,x(bp)n c AB. Put XrG = = a:(bp)n =zin DlT(QZl, cee ,x(bp)n).
Then
d,. . (bp)"r "
(PP 0y 4 (op — 2)(b0)" T(@) — (bp — 1)(0p)"T() = 0

for all x € 4B. Since

d._ 1Tr1 4+ Ty d. . (bp)"r(x1 + -+ z@ppn)
—T( (bp) ) — —T( - (bp)
r d r (bp)nd
_ ) @t Ty
(bp)™

r d

1+ Tpp)n
= (bp)"T
r) T (s

)

)

)

for all z1,--- ,z@pyn € 4B,

(bp)™~*

Ty + -+ Z(bp)n Topi—bp+1 T+ + Thpi
bp)"T + bp(bp — 2 T
(bp)" T ( o) ) + bp(bp — 2) ; ( o
(bp)™

T+ -+ Titbp—2
= — T
(b= 1) 3 T

)
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for all z1 = T(bp)n+1s" " sy Tbp—2 = T(bp)n+bp—2> Lbp—1,""" s T(bp)» €
aB. By Theorem 2.1, T' is additive. Moreover, by passing to the limit
in (3.1) as j — oo, we get (3.iii).

Now let L : 4B — AC be another additive mapping satisfying

I£@) = L)) < g sbla o 2)

for all x € 4B.

I7(0) - L) =g IT(E Vo) — L)
<G T ) - 1o
d ;i (bp)nrj _ (bp)nrj

(P y0) - L i)

< (P Ty (T

d
which tends to zero as j — oo by (3.i). Thus T'(z) = L(z) for all
x € oB. This proves the uniqueness of 7.

By the assumption, for each u € U(A),

d j (bp)nrj (bp)nrj

() 1P (B ()
d i (bp)n/r 7 (bp)n/r i
(e N

for all x € 4B, and

d j (bp)"r j (bp)"r j
oy P ID (e (R )] = 0

as j — oo for all x € oB. So

(

D,T(z, - ,x) = Ii
() = i G
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for all u € U(A) and all = € 4B. Hence

) + (bp — 2)(bp)" uT (x)
— (bp = 1)(bp)" T(uz) = 0

for all w € U(A) and all z € 4B. So
uT'(x) = T (uzx)

for all u € U(A) and all z € 4B.
Now let a € A (a #0) and M an integer greater than 4|a|. Then

S R I RS T
M T MY S e T 4 33

By [1, Theorem 1], there exist three elements u1, u2, us € U(A) such
that 3% = u1 +uz + usg. And T(z) = T(3- 2z) = 3T (5z) for all
z € aB. So T(3z) = :T(x) for all z € 4B. Thus

— 3

M a 1 a M a
Tlaz) = T(— 3% 2y = M -T(= - 3% ) = 2132
(az) =T (5 33;7) (3337 =376

M M
= ?T(ulx + uox + usz) = ?(T(ulx) + T'(ugz) + T'(usx))
M _a

M
= ?(ul +ug +u3)T(x) = 3 -3MT(33)
= aTl'(x)
for all z € 4B. Obviously, T'(0x) = 07 (x) for all x € 45. Hence
T(ax + by) = T(ax) + T'(by) = aT'(x) + bT (y)

for all a,b € A and all z,y € 4B. So the unique additive mapping
T : oB — 4C is an A-linear mapping, as desired. O
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THEOREM 3.2. Let f: aB — AC be a mapping with f(0) = 0 for

which there exists a function ¢ : 4B®P)" — [0,00) such that

- = d - (bp—1)r
L) — T NI (X i
(20(3:17 733(171?) ) ;((bp_ 1)7,,) (10(( d ) X1, )
. bp—1)r .
(3.iv) (%)J.@(bmn) < o0
L1+ A Tp)n
Du P n = || (bp)™
[ D f (21 Zopyn )|l = [1(bp) " wf( o) )
S Topi—bp+1 + *** + Tpp;
B plp—2) Y uf(R )
i=1
(bp)™
d rUT; + 4+ ruTiipp_o
- Zf( d o )H S(,O(flfl, 7x(bp)")
[t
for all T1 = T(bp)n+1," "y Tbp—2 = L(bp)n+bp—2>Lbp—1," """ , T(bp)n € AB

and all u € U(A). Then there exists a unique A-linear mapping
T : osB — AC such that

: 1 -
(3.vi) If(z) = T(2)]| < W‘P(% S, )
for all x € AB.
Proof. Put w =1 € U(A). Let 1 = --- = zp» = o in (3.v).
Then we get
6" Fa)+ (o2 0p)" fa) — L =Dy < )

for all x € 4B. So one can obtain
d (bp — D)r 1

1f(z) — (bp — 1)7°f( d z)| < W‘P(@"a“' , @),
hence
d j (bp — D)r j d 1 (bp — D)r 1
(G5 H(CE 2 0) = (5 (o)
1 d j (bp—l)rj (bp — 1)r iy
< i e (. ()
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for all x € 4B. So we get

d

(bp —1)r (bp — 1)(bp)"

d m o (bp—1)r m . (bp — 1)r ",
I W e (e TR

Py <

I1f (2)—(

for all x € 4B.
Let x be an element in 4B. For positive integers [ and m with

L >m,

d d . (p—1r m,
- 1) 7(bp_1)r) f———)"a)ll

1 —, d o (p-1Dr; (bp = Dr.;
< i 2 G (e (),

j=m

Py

I

which tends to zero as m — oo by (3.iv). So {(ﬁ)jf((wyaz)}

is a Cauchy sequence for all z € 4B. Since 2C is complete, the se-

quence {((bpil)T)jf(((bpgl)T)jx)} converges for all x € 4B. We can

define a mapping T': 4B — AC by

N T L

for all x € 4B.
By (3.iv) and (3.4), we get

||D1T(331, te 7x(bp)")||
L j (bp—l)rj (bp—l)rj
—jlggo(m) ||D1f((7d )Y 1, ,(7(1 ) (pyn) |l
< Jim ( d )jW((@)jxlv”' :(@)jx(bmn) —0

j—oo (bp — 1)r
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for all z1, - ,xppyn € aB. Hence D1T(x1,--- ,2@pp)n) = 0 for all
T1, Ty € AB.Putzy = = 2y = xin D1T (21, -+, Zppyn)-
Then
n n bp)*d . (bp — 1)r
(op)" (@) + (bp —2) (b)) — 2 =Dy g
for all z € 4B. So
bp — 1 bp — 1
T(( p . )Ta:) _ (b ; )TT(Q:)

for all x € 4B. Since

d, . 1T+ TTipp—2 d_. (bp—1)r(x; + -+ Titpp—2)

-T =-T
r ( d ) r ( (bp — 1)d )
dp—1)r @i+ +Titpp2
=° T( T2
r d bp—1
Ti+ -+ Tigbp—2
=bp—-1)T
(bp — 1) (P )
for all Ti, + , Titbp—2 € AB,
n—1
(bp)nT(xl + .+ T(pp)n )+bp(bp B 2) (b% T(xbpi—bp'f‘l + -4 xbpi)
(bp)™ — bp
(bp)™
Ti+ -+ Tigbp—2
= (bp—1 T
(o= 1) 3 ()
for all 1 = Tpyng1, s Top—2 = T(op)ntbp—2, Top—1," ", T(bp)n €

aB. By Theorem 2.1, T' is additive. Moreover, by passing to the limit
in (3.3) as j — o0, we get (3.vi).
Now let L : 4B — AC be another additive mapping satisfying
1 ~

)nw(gg,...,x)

[ f(z) — L(z)| < W
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for all x € 4B.

I7(0) - L) = VIT(E ) = ()
<l I ) - (P )
i 20 - L)
< G A e (P

which tends to zero as j — oo by (3.iv). Thus T'(x) = L(x) for all
x € oB. This proves the uniqueness of T
By the assumption, for each u € U(A),
(bp — 1)7°)j$’ . ((bp —r
d
d - (bp—1)r
(bp —1)r

d

T ya)

( Y 1D f((

< (

for all x € 4B, and

d
(bp — )r

(bp —1)r n

PIDuf (i, (2

(

as 7 — oo for all x € oB. So

D, T(z, - ,x)
(B
for all u € U(A) and all & € 4B. Hence
D T(z,-- )
= ()" uT(@) + (bp — 2)(op) () — (P D

=0
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for all w € U(A) and all z € 4B. So
uT'(x) = T (uz)
for all u € U(A) and all z € 4B.

The rest of the proof is the same as the proof of Theorem 3.1. [J

THEOREM 3.3. Let f: aB — AC be a mapping with f(0) = 0 for

which there exists a function ¢ : 4B®P)" — [0,00) such that

oo

- , bp — 2 1
()0(3:17"'73: "): bpj‘P_ —T1, ~ L2,
(bp) ]_ZO( ) ( (bp)] (bp)] 2
. bp — 2 1
(3.vii) - Wx(bp)"—bp—i-lv Wx(bp)"—bp-i-% Tt
L ) <
(bp)7 "7
L1+ A Tp)n
DuffL',"',ZL' » )l = bpnuf
[ D f (21 )| =[1(bp) " wf( o) )
(e Topi—bp+1 T =+ + Topi
+bp(bp —2) > uf(=E=E ” ~)
i=1
() UT; + -+ + UTitbp—2
(3.vili) —p—1) Y g
i=1 P~
< ()0(3:17 T 7x(bp)")
for all x1 = T(bp)n41s>""" »Tbp—2 = L(bp)n+bp—23 Lop—15""" » T(bp)n € B

and all u € U(A). Then there exists a unique A-linear mapping
T : osB — AC such that

: 1 ~
Bix) 1@ - T@) < oy B )

for all x € AB.
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Proof. Put u = 1 € U(A). Let xppi—tpr1 = = and Tipi—ppr2 =
-+ = Tpp; = y in (3.viii) for all i = 1,--- , (bp)"~ 1. Then we get
n e T+ (p—1)y n e T+ (bp—1)y
|(bp) f(T) + (bp — 2)(bp) f(T)
— (bp = 1) (bp)" " f(y)
(3.5) — (bp — 1) (bp — 1)(bp)" " £(

S(;O(xayaya"' sy Ly Yyt 7y)

x+ (bp—2)y
bp —1

)l

for all x,y € aB. Replacing = and y by —(bp — 2)x and z in (3.5),

respectively, we get
1(bp — 1)(bp)"f(%) — (bp = 1)(bp)" " f ()]
< @(_(bp - 2)33,111,111, T _(bp - 2)3:71;5 e 73:)

for all x € 4B. So one can obtain

If(z )—bpf( )||
1
S(bp— 1)(bp)"_1 gp(—(bp—Q)a:,x,x,--- ,—(bp—2)$,$,"- ,IE),
hence
|59) F( )= (b f (e )|
PE I py P Ty
(bp)? (o2 1
= (bp — 1)(bp)n—t (bp)d 7 (bp)? ™
(bp)a 7 7 (bp)? T (bp)? T (bp)d
for all x € 4B. So we get
() (bp) £( 1) 2)|
Ay bp 2 1
(3.6) <( 1)(bp)n—t Z )" (Bp)™ " (op)™ "
Lt T, —bp_2a: ! Ty ! z)
(bp)ym " (bp)™ T (bp)m T (bp)™
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for all x € 4B.

Let x be an element in 4B. For positive integers [ and m with
[ >m,

') = 001"
1 -1 ; bp_2
(bp — 1)(bp)n—1 ];n(bp) o(— ol
Lx : Ly —bp_Qa: 1 T .- L)
R U OO CO L (7

which tends to zero as m — oo by (3.vii). So {(bp)jf(@x)} is a
Cauchy sequence for all x € 4B. Since 2C is complete, the sequence
{(bp)jf(@x)} converges for all x € 4B8. We can define a mapping
T : AB — AC by

3.7 T(z) = lim (bp)’ .
(3.7) () = lim (bp) f((bp)] x)
for all x € 4B.
By (3.vii) and (3.7), we get

IDIT (1, syl = Tim () 1Dy f(r, s )]

S j=o0 (bp)? = T (bp)

. 1 1
= ]LIEO( p) ()0( (bp)] X1, ) (bp)J x(bp) )

for all z1, - ,xppyn € aB. Hence D1T(x1,--- ,2@pp)n) = 0 for all

T1, -, Tppyn € aAB. By Theorem 2.1, T' is additive. Moreover, by
passing to the limit in (3.6) as j — oo, we get (3.ix).
Now let L : 4B — AC be another additive mapping satisfying

1 ~
o~ Dy T

If(z) = L(z)|| <
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s
for all z € 4B.
(&) = La)| =00 [T(ms0) = Lo
<) IT(G7) = (sl
+ 0nP I () = Lol
1 1 2),

2 ISy
N R SN S TR (Y

which tends to zero as j — oo by (3.vii). Thus T'(x) = L(x) for all

x € oB. This proves the uniqueness of T
By the assumption, for each u € U(A),

: 1 1 : 1 1
) | Dyf(——x, -, ——x)|| < (bp)l p(—x, -, -
P IDuF (s )l < Qo el o)
for all x € 4B, and
1 1
— 0

(bp)jHDuf(wxa e awx)ﬂ

as 7 — oo for all x € oB. So

i - 1 1
D, T(z, - ,x) :jll)rgo(bp)JDuf(Wx,--- ,Wx) =0

for all u € U(A) and all = € 4B. Hence

D, T(x, - ,x)
= (bp)"uT'(z) + (bp — 2)(bp)"uT'(x) — (bp — 1)(bp)" T (uz) =0

for all w € U(A) and all z € 4B. So
uT'(x) = T (uz)

for all u € U(A) and all z € 4B.
The rest of the proof is the same as the proof of Theorem 3.1.

O
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