• Title/Summary/Keyword: stability equations

Search Result 1,364, Processing Time 1.055 seconds

On the Stability of Orthogonally Cubic Functional Equations

  • Baak, Choonkil;Moslehian, Mohammad Sal
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.69-76
    • /
    • 2007
  • Let $f$ denote a mapping from an orthogonality space ($\mathcal{X}$, ${\bot}$) into a real Banach space $\mathcal{Y}$. In this paper, we prove the Hyers-Ulam-Rassias stability of the orthogonally cubic functional equations $f(2x+y)+f(2x-y)=2f(x+y)+2f(x-y)+12f(x)$ and $f(x+y+2z)+f(x+y-2z)+f(2x)+f(2y)=2f(x+y)+4f(x+z)+4f(x-z)+4f(y+z)+4f(y-z)$, where $x{\bot}y$, $y{\bot}z$, $x{\bot}z$.

  • PDF

STABILITY OF TWO GENERALIZED 3-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATIONS

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • In this paper, we investigate the stability of two functional equations f(ax+by + cz) - abf(x + y) - bcf(y + z) - acf(x + z) + bcf(y) - a(a - b - c)f(x) - b(b - a)f(-y) - c(c - a - b)f(z) = 0, f(ax+by + cz) + abf(x - y) + bcf(y - z) + acf(x - z) - a(a + b + c)f(x) - b(a + b + c)f(y) - c(a + b + c)f(z) = 0 by applying the direct method in the sense of Hyers and Ulam.

Numerical Techniques in Calculation of Hydrodynamic Stability for Vertical Natural Convection Flows (수직(垂直) 자연대류(自然對流)의 수동력학적(水動力學的) 안정성(安定性) 계산에 관한 수치해석(數値解析) 방법(方法))

  • Hwang, Young-Kyu
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.82-94
    • /
    • 1988
  • The hydrodynamic stability equations for natural convection flows adjacent to a vertical isothermal surface in cold or warm water (Boussinesq or non-Boussinesq situation for density relation), constitute a two-point-boundary-value (eigenvalue) problem, which was solved numerically using the simple shooting and the orthogonal collocation method. This is the first instance in which these stability equations have been solved using a computer code COLSYS, that is based on the orthogonal collocation method, designed to solve accurately two-point-boundary-value problem. Use of the orthogonal collocation method significantly reduces the error propagation which occurs in solving the initial value problem and avoids the inaccuracy of superposition of asymptotic solutions using the conventional technique of simple shooting.

  • PDF

On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations

  • Abdel-Gawad, Hamdy I.;Osman, M.S.
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.661-680
    • /
    • 2013
  • The eigenvalue problems arise in the analysis of stability of traveling waves or rest state solutions are currently dealt with, using the Evans function method. In the literature, it had been shown that, use of this method is not straightforward even in very simple examples. Here an extended "variational" method to solve the eigenvalue problem for the higher order dierential equations is suggested. The extended method is matched to the well known variational iteration method. The criteria for validity of the eigenfunctions and eigenvalues obtained is presented. Attention is focused to find eigenvalue and eigenfunction solutions of the Kuramoto-Slivashinsky and (K[p,q]) equation.

Stability of LTI Systems with Unstructured Uncertainty Using Quadratic Disc Criterion

  • Yeom, Dong-Hae;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.124-131
    • /
    • 2012
  • This paper deals with robust stability of linear time-invariant (LTI) systems with unstructured uncertainties. A new relation between uncertainties and system poles perturbed by the uncertainties is derived from a graphical analysis. A stability criterion for LTI systems with uncertainties is proposed based on this result. The migration range of the poles in the proposed criterion is represented as the bound of uncertainties, the condition number of a system matrix, and the disc containing the poles of a given nominal system. Unlike the existing methods depending on the solutions of algebraic matrix equations, the proposed criterion provides a simpler way which does not involves algebraic matrix equations, and a more flexible root clustering approach by means of adjusting the center and the radius of the disc as well as the condition number.

Convergence Analysis of LU scheme for the Euler equations (Euler 방정식에 대한 LU implicit scheme의 수렴성 해석)

  • Kim J.S.;Kwon O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.49-55
    • /
    • 2003
  • A comprehensive study has been made for the investigation of the convergence characteristics of the LU scheme for the Euler equations using von Neumann stability analysis. The stability results indicate that the convergence rate is governed by a specific parameter combination. Based on this insight it is shown that the LU scheme will not suffer convergence deterioration at any grid aspect ration if the local time step is defined using appropriate parameter combination. The numerical results demonstrate that this time step definition gives uniform convergence for grid aspect ratios from one to $1\times10^4$.

  • PDF

Effects of Slenderness Ratio on Dynamic Behavior of Cracked Beams Subjected to Subtangential Follower Force (경사종동력과 크랙을 가진 보의 진동특성에 미치는 세장비의 영향)

  • Son, In-Soo;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper the purpose is to investigate the stability and variation of natural frequency of a cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the stability of a cantilever beam as the crack effect and slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. By using the results of this paper, we can obtain the judgment base that the choice of beam models for the effect of slenderness ratio and crack.

Dynamic stability of a metal foam rectangular plate

  • Debowski, D.;Magnucki, K.;Malinowski, M.
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.151-168
    • /
    • 2010
  • The subject of the paper is an isotropic metal foam rectangular plate. Mechanical properties of metal foam vary continuously through plate of the thickness. A nonlinear hypothesis of deformation of plane cross section is formulated. The system of partial differential equations of the plate motion is derived on the basis of the Hamilton's principle. The system of equations is analytically solved by the Bubnov-Galerkin method. Numerical investigations of dynamic stability for family rectangular plates with respect analytical solution are performed. Moreover, FEM analysis and theirs comparison with results of numerical-analytical calculations are presented in figures.

FIXED POINTS AND FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

  • Lee, Jung Rye;Shin, Dong Yun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.273-286
    • /
    • 2011
  • Using the fixed point method, we prove the Hyers-Ulam stability of the following quadratic functional equations $${cf\left({\displaystyle\sum_{i=1}^n\;xi}\right)+{\displaystyle\sum_{i=2}^nf}{\left(\displaystyle\sum_{i=1}^n\;x_i-(n+c-1)x_j\right)}\\ {=(n+c-1)\;\left(f(x_1)+c{\displaystyle\sum_{i=2}^n\;f(x_i)}+{\displaystyle\sum_{i in fuzzy Banach spaces.

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.