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Abstract. Let f denote a mapping from an orthogonality space (X ,⊥) into a real Banach

space Y. In this paper, we prove the Hyers–Ulam–Rassias stability of the orthogonally

cubic functional equations f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x) and

f(x+ y +2z)+ f(x+ y− 2z)+ f(2x)+ f(2y) = 2f(x+ y)+4f(x+ z)+4f(x− z)+4f(y +

z) + 4f(y − z), where x ⊥ y, y ⊥ z, x ⊥ z.

1. Introduction and preliminaries

The stability problem of functional equations originated from the following ques-
tion of Ulam [27]: Under what condition does there is an additive mapping near an
approximately additive mapping? In 1941, Hyers [11] gave a partial affirmative an-
swer to the question of Ulam in the context of Banach spaces. In 1978, Th. M.
Rassias [22] extended the theorem of Hyers by considering the unbounded Cauchy
difference ‖f(x+y)−f(x)−f(y)‖ ≤ ε(‖x‖p +‖y‖p), (ε > 0, p ∈ [0, 1)). The result
of Rassias has provided a lot of influence in the development of what we now call
Hyers–Ulam–Rassias stability of functional equations. During the last decades sev-
eral stability problems of functional equations have been investigated in the spirit
of Hyers–Ulam–Rassias. The reader is referred to [1], [2], [5], [12], [17], [23] and
references therein for detailed information on stability of functional equations.

There are several concepts of orthogonality in an arbitrary real Banach space
X which are generalizations of orthogonality in the inner product spaces. These
are of intrinsic geometric interest and have been studied by many mathematicians.
Among them we recall the following ones:
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(i) Trivial ⊥v: x ⊥v 0, 0 ⊥v x for all x ∈ X and for non-zero elements x, y ∈ X ,
x ⊥v y if and only if x, y are linearly independent.

(ii) Birkhoff–James ⊥B : x ⊥B y if ‖x‖ ≤ ‖x + αy‖ for all scalars α; cf. [3], [14].

(iii) Phythagorean ⊥P : x ⊥P y if ‖x + y‖2 = ‖x‖2 + ‖y‖2 (see [13])

(vi) Isosceles ⊥I : x ⊥I y if ‖x + y‖ = ‖x− y‖ (see [13])

(v) Diminnie ⊥D: x ⊥D y if sup{f(x)g(y) − f(y)g(x) : f, g ∈ S∗} = ‖x‖‖y‖
where S∗ is the unit sphere of the dual space X ∗ of X ; cf. [6]

(vi) Carlsson ⊥C : x ⊥C y if either
∑m

i=1 αi‖βix + γiy‖2 = 0 where m ≥ 2 and
αi 6= 0, βi, γi are fixed real numbers such that

∑m
i=1 αiβ

2
i =

∑m
i=1 αiγ

2
i =

0,
∑m

i=1 αiβiγi = 1; cf. [4].

(vii) T -orthogonality ⊥T : Given a linear mapping T : X → X ∗, x ⊥T y if
T (x)(y) = 0; cf. [25]

In 1975, Gudder and Strawther [10] defined an abstract orthogonality relation
⊥ by a system consisting of five axioms and described the general semi-continuous
real-valued solution of conditional Cauchy functional equation f(x + y) = f(x) +
f(y), x ⊥ y. In 1985, Rätz [24] introduced a new definition of orthogonality by
using more restrictive axioms than those of Gudder and Strawther. A (normed)
linear space X equipped with an orthogonal relation ⊥ in any appropriate sense
containing the conditions x ⊥ 0, 0 ⊥ x (x ∈ A) is called an orthogonality (normed)
space. In 1995, Ger and Sikorska [9] investigated the so-called orthogonal stability
of the Cauchy functional equation in the sense of Rätz. This result then generalized
by Moslehian [19] in the framework of Banach modules.

The orthogonally quadratic equation f(x+y)+f(x−y) = 2f(x)+2f(y), x ⊥ y
was first studied by Vajzović [28] when X is a Hilbert space, Y is the scalar field,
f is continuous and ⊥ means the Hilbert space orthogonality. Later, Drljević [7],
Fochi [8] and Szabó [26] generalized this result. An investigation of the orthogonal
stability of the quadratic equation may be found in [20] (see also [18]). In [15], Jun
and Kim considered the following cubic functional equation

(1.1) f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x).

In [16], Jung and Chang considered the following cubic functional equation

f(x + y + 2z) + f(x + y − 2z) + f(2x) + f(2y)(1.2)
= 2f(x + y) + 4f(x + z) + 4f(x− z) + 4f(y + z) + 4f(y − z).

It is easy to show that the function f(x) = x3 satisfies the functional equations
(1.1) and (1.2), which are called cubic functional equations and every solution of
the cubic functional equations is said to be a cubic mapping.
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Let X be an orthogonality space and Y a real Banach space. A mapping f :
X → Y is called orthogonally cubic if it satisfies any one of the so-called orthogonally
cubic functional equations

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x),(1.3)

or

f(x + y + 2z) + f(x + y − 2z) + f(2x) + f(2y)(1.4)
= 2f(x + y) + 4f(x + z) + 4f(x− z) + 4f(y + z) + 4f(y − z)

for all x, y, z ∈ X with x ⊥ y, y ⊥ z, x ⊥ z. Putting y = 0 in (1.3) and y = z = 0
in (1.4) we get f(2x) = 8f(x) whence f(2nx) = 8nf(x) (x ∈ X , n ∈ N) for all
orthogonally cubic mapping f .

In this paper, we investigate the Hyers–Ulam–Rassias stability of the orthogo-
nally cubic functional equations (1.3) and (1.4).

2. Stability of orthogonally cubic functional equations

Throughout this section, (X ,⊥) denotes an orthogonality normed space with
the norm ‖ · ‖X and (Y, ‖ · ‖Y) is a Banach space. We aim to study the conditional
stability problems for

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x),

and

f(x + y + 2z) + f(x + y − 2z) + f(2x) + f(2y)
= 2f(x + y) + 4f(x + z) + 4f(x− z) + 4f(y + z) + 4f(y − z)

where x, y, z ∈ X with x ⊥ y, y ⊥ z, x ⊥ z and f : X → Y is a mapping.

Theorem 2.1. Let θ and p (p < 3) be nonnegative real numbers. Suppose that
f : X → Y is a mapping with f(0) = 0 fulfilling

‖f(2x + y) + f(2x− y)− 2f(x + y)− 2f(x− y)− 12f(x)‖Y(2.1)
≤ θ(‖x‖p

X + ‖y‖p
X )

for all x, y ∈ X with x ⊥ y. Then there exists a unique orthogonally cubic mapping
T : X → Y such that

‖f(x)− T (x)‖Y ≤ θ

16− 2p+1
‖x‖p

X(2.2)

for all x ∈ X .

Proof. Putting y = 0 in (2.1), we get

‖2f(2x)− 16f(x)‖Y ≤ θ‖x‖p
X(2.3)
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for all x ∈ X , since x ⊥ 0. So

‖f(x)− 1
8
f(2x)‖Y ≤ θ

16
‖x‖p

X

for all x ∈ X . Hence

‖ 1
8n

f(2nx)− 1
8m

f(2mx)‖Y ≤ θ

16

m−1∑

k=n

2pk

8k
‖x‖p

X(2.4)

for all nonnegative integers n,m with n < m. Thus { 1
8n f(2nx)} is a Cauchy se-

quence in Y. Since Y is complete, there exists a mapping T : X → Y defined
by

T (x) := lim
n→∞

1
8n

f(2nx)

for all x ∈ X . Letting n = 0 and m → ∞ in (2.4), we get the inequality (2.2). It
follows from (2.1) that

‖T (2x + y) + T (2x− y)− 2T (x + y)− 2T (x− y)− 12T (x)‖Y
= lim

n→∞
1
8n
‖f(2n(2x + y)) + f(2n(2x− y))− 2f(2n(x + y))

− 2f(2n(x− y))− 12f(2nx)‖Y
≤ lim

n→∞
2pnθ

8n
(‖x‖p

X + ‖y‖p
X ) = 0

for all x, y ∈ X with x ⊥ y. So

T (2x + y) + T (2x− y)− 2T (x + y)− 2T (x− y)− 12T (x) = 0

for all x, y ∈ X with x ⊥ y. Hence T : X → Y is an orthogonally cubic mapping.
Let Q : X → Y be another orthogonally cubic mapping satisfying (2.2). Then

‖T (x)−Q(x)‖Y =
1
8n
‖T (2nx)−Q(2nx)‖Y

≤ 1
8n

(‖f(2nx)− T (2nx)‖Y + ‖f(2nx)−Q(2nx)‖Y)

≤ θ

8− 2p
· 2pn

8n
‖x‖p

X ,

which tends to zero for all x ∈ X . So we have T (x) = Q(x) for all x ∈ X . This
proves the uniqueness of T . ¤

Theorem 2.2. Let θ and p (p > 3) be nonnegative real numbers. Suppose that
f : X → Y is a mapping with f(0) = 0 fulfilling

‖f(2x + y) + f(2x− y)− 2f(x + y)− 2f(x− y)− 12f(x)‖Y ≤ θ(‖x‖p
X + ‖y‖p

X )
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for all x, y ∈ X with x ⊥ y. Then there exists a unique orthogonally cubic mapping
T : X → Y such that

‖f(x)− T (x)‖Y ≤ θ

2p+1 − 16
‖x‖p

X(2.5)

for all x ∈ X .

Proof. It follows from (2.3) that

‖f(x)− 8f(
x

2
)‖Y ≤ θ

2p+1
‖x‖p

X

for all x ∈ X . So

‖8nf(
x

2n
)− 8mf(

x

2m
)‖Y ≤ θ

2p+1

m−1∑

k=n

8k

2pk
‖x‖p

X(2.6)

for all nonnegative integers n,m with n < m. Thus {8nf( x
2n )} is a Cauchy sequence

in Y. Since Y is complete, there exists a mapping T : X → Y defined by

T (x) := lim
n→∞

8nf(
x

2n
)

for all x ∈ X . Letting n = 0 and m →∞ in (2.6), we get the inequality (2.5).
The rest of the proof is similar to the proof of Theorem 2.1. ¤

Theorem 2.3. Let θ and p (p < 3) be nonnegative real numbers. Suppose that
f : X → Y is a mapping with f(0) = 0 fulfilling

‖f(x + y + 2z) + f(x + y − 2z) + f(2x) + f(2y)− 2f(x + y)(2.7)
− 4f(x + z)− 4f(x− z)− 4f(y + z)− 4f(y − z)‖Y

≤ θ(‖x‖p
X + ‖y‖p

X + ‖z‖p
X )

for all x, y, z ∈ X with x ⊥ y, y ⊥ z and x ⊥ z. Then there exists a unique
orthogonally cubic mapping T : X → Y such that

‖f(x)− T (x)‖Y ≤ θ

8− 2p
‖x‖p

X(2.8)

for all x ∈ X .

Proof. Putting y = z = 0 in (2.7), we get

‖f(2x)− 8f(x)‖Y ≤ θ‖x‖p
X(2.9)

for all x ∈ X , since x ⊥ 0 and 0 ⊥ 0. So

‖f(x)− 1
8
f(2x)‖Y ≤ θ

8
‖x‖p

X
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for all x ∈ X . Hence

‖ 1
8n

f(2nx)− 1
8m

f(2mx)‖Y ≤ θ

8

m−1∑

k=n

2pk

8k
‖x‖p

X(2.10)

for all nonnegative integers n,m with n < m. Thus { 1
8n f(2nx)} is a Cauchy se-

quence in Y. Since Y is complete, there exists a mapping T : X → Y defined
by

T (x) := lim
n→∞

1
8n

f(2nx)

for all x ∈ X . Letting n = 0 and m → ∞ in (2.10), we get the inequality (2.8). It
follows from (2.7) that

‖T (x + y + 2z) + T (x + y − 2z) + T (2x) + T (2y)− 2T (x + y)
− 4T (x + z)− 4T (x− z)− 4T (y + z)− 4T (y − z)‖Y

= lim
n→∞

1
8n
‖f(2n(x + y + 2z)) + f(2n(x + y − 2z)) + f(2n+1x) + f(2n+1y)

− 2f(2n(x + y))− 4f(2n(x + z))− 4f(2n(x− z))− 4f(2n(y + z))− 4f(2n(y − z))‖Y
≤ lim

n→∞
2pnθ

8n
(‖x‖p

X + ‖y‖p
X + ‖z‖p

X ) = 0

for all x, y, z ∈ X with x ⊥ y, y ⊥ z and x ⊥ z. So

T (x + y + 2z) + T (x + y − 2z) + T (2x) + T (2y)− 2T (x + y)
− 4T (x + z)− 4T (x− z)− 4T (y + z)− 4T (y − z) = 0

for all x, y, z ∈ X with x ⊥ y, y ⊥ z and x ⊥ z. Hence T : X → Y is an orthogonally
cubic mapping. Let Q : X → Y be another orthogonally cubic mapping satisfying
(2.8). Then

‖T (x)−Q(x)‖Y =
1
8n
‖T (2nx)−Q(2nx)‖Y

≤ 1
8n

(‖f(2nx)− T (2nx)‖Y + ‖f(2nx)−Q(2nx)‖Y)

≤ 2θ

8− 2p
· 2pn

8n
‖x‖p

X ,

which tends to zero for all x ∈ X . So we have T (x) = Q(x) for all x ∈ X . This
proves the uniqueness of T . ¤

Theorem 2.4. Let θ and p (p > 3) be nonnegative real numbers. Suppose that
f : X → Y is a mapping with f(0) = 0 fulfilling

‖f(x + y + 2z) + f(x + y − 2z) + f(2x) + f(2y)− 2f(x + y)
− 4f(x + z)− 4f(x− z)− 4f(y + z)− 4f(y − z)‖Y
≤ θ(‖x‖p

X + ‖y‖p
X + ‖z‖p

X )
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for all x, y, z ∈ X with x ⊥ y, y ⊥ z and x ⊥ z. Then there exists a unique
orthogonally cubic mapping T : X → Y such that

‖f(x)− T (x)‖Y ≤ θ

2p − 8
‖x‖p

X(2.11)

for all x ∈ X .

Proof. It follows from (2.9) that

‖f(x)− 8f(
x

2
)‖Y ≤ θ

2p
‖x‖p

X

for all x ∈ X . So

‖8nf(
x

2n
)− 8mf(

x

2m
)‖Y ≤ θ

2p

m−1∑

k=n

8k

2pk
‖x‖p

X(2.12)

for all nonnegative integers n,m with n < m. Thus {8nf( x
2n )} is a Cauchy sequence

in Y. Since Y is complete, there exists a mapping T : X → Y defined by

T (x) := lim
n→∞

8nf(
x

2n
)

for all x ∈ X . Letting n = 0 and m → ∞ in (2.12), we get the inequality (2.11).
The rest of the proof is similar to the proof of Theorem 2.3. ¤
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