On the Stability of Orthogonally Cubic Functional Equations

Choonkil Baak
Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea
e-mail: cgpark@cnu.ac.kr

Mohammad Sal Moslehian
Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran
e-mail: moslehian@member.ams.org
Homepage: http://www.um.ac.ir/~moslehian/
Abstract. Let f denote a mapping from an orthogonality space (\mathcal{X}, \perp) into a real Banach space \mathcal{Y}. In this paper, we prove the Hyers-Ulam-Rassias stability of the orthogonally cubic functional equations $f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x)$ and $f(x+y+2 z)+f(x+y-2 z)+f(2 x)+f(2 y)=2 f(x+y)+4 f(x+z)+4 f(x-z)+4 f(y+$ $z)+4 f(y-z)$, where $x \perp y, y \perp z, x \perp z$.

1. Introduction and preliminaries

The stability problem of functional equations originated from the following question of Ulam [27]: Under what condition does there is an additive mapping near an approximately additive mapping? In 1941, Hyers [11] gave a partial affirmative answer to the question of Ulam in the context of Banach spaces. In 1978, Th. M. Rassias [22] extended the theorem of Hyers by considering the unbounded Cauchy difference $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right),(\epsilon>0, p \in[0,1))$. The result of Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. During the last decades several stability problems of functional equations have been investigated in the spirit of Hyers-Ulam-Rassias. The reader is referred to [1], [2], [5], [12], [17], [23] and references therein for detailed information on stability of functional equations.

There are several concepts of orthogonality in an arbitrary real Banach space \mathcal{X} which are generalizations of orthogonality in the inner product spaces. These are of intrinsic geometric interest and have been studied by many mathematicians. Among them we recall the following ones:

[^0](i) Trivial $\perp_{v}: x \perp_{v} 0,0 \perp_{v} x$ for all $x \in \mathcal{X}$ and for non-zero elements $x, y \in \mathcal{X}$, $x \perp_{v} y$ if and only if x, y are linearly independent.
(ii) Birkhoff-James $\perp_{B}: x \perp_{B} y$ if $\|x\| \leq\|x+\alpha y\|$ for all scalars α; cf. [3], [14].
(iii) Phythagorean $\perp_{P}: x \perp_{P} y$ if $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$ (see [13])
(vi) Isosceles $\perp_{I}: x \perp_{I} y$ if $\|x+y\|=\|x-y\|$ (see [13])
(v) Diminnie $\quad \perp_{D}: x \perp_{D} y$ if $\sup \left\{f(x) g(y)-f(y) g(x): f, g \in S^{*}\right\}=\|x\| \mid \| y$ where S^{*} is the unit sphere of the dual space \mathcal{X}^{*} of \mathcal{X}; cf. [6]
(vi) Carlsson $\perp_{C}: x \perp_{C} y$ if either $\sum_{i=1}^{m} \alpha_{i}\left\|\beta_{i} x+\gamma_{i} y\right\|^{2}=0$ where $m \geq 2$ and $\alpha_{i} \neq 0, \beta_{i}, \gamma_{i}$ are fixed real numbers such that $\sum_{i=1}^{m} \alpha_{i} \beta_{i}^{2}=\sum_{i=1}^{m} \alpha_{i} \gamma_{i}^{2}=$ $0, \sum_{i=1}^{m} \alpha_{i} \beta_{i} \gamma_{i}=1$; cf. [4].
(vii) T-orthogonality \perp_{T} : Given a linear mapping $T: \mathcal{X} \rightarrow \mathcal{X}^{*}, x \perp_{T} y$ if $T(x)(y)=0 ; \mathrm{cf} .[25]$

In 1975, Gudder and Strawther [10] defined an abstract orthogonality relation \perp by a system consisting of five axioms and described the general semi-continuous real-valued solution of conditional Cauchy functional equation $f(x+y)=f(x)+$ $f(y), x \perp y$. In 1985, Rätz [24] introduced a new definition of orthogonality by using more restrictive axioms than those of Gudder and Strawther. A (normed) linear space \mathcal{X} equipped with an orthogonal relation \perp in any appropriate sense containing the conditions $x \perp 0,0 \perp x(x \in \mathcal{A})$ is called an orthogonality (normed) space. In 1995, Ger and Sikorska [9] investigated the so-called orthogonal stability of the Cauchy functional equation in the sense of Rätz. This result then generalized by Moslehian [19] in the framework of Banach modules.

The orthogonally quadratic equation $f(x+y)+f(x-y)=2 f(x)+2 f(y), x \perp y$ was first studied by Vajzović [28] when \mathcal{X} is a Hilbert space, \mathcal{Y} is the scalar field, f is continuous and \perp means the Hilbert space orthogonality. Later, Drljević [7], Fochi [8] and Szabó [26] generalized this result. An investigation of the orthogonal stability of the quadratic equation may be found in [20] (see also [18]). In [15], Jun and Kim considered the following cubic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) . \tag{1.1}
\end{equation*}
$$

In [16], Jung and Chang considered the following cubic functional equation

$$
\begin{align*}
& f(x+y+2 z)+f(x+y-2 z)+f(2 x)+f(2 y) \tag{1.2}\\
= & 2 f(x+y)+4 f(x+z)+4 f(x-z)+4 f(y+z)+4 f(y-z) .
\end{align*}
$$

It is easy to show that the function $f(x)=x^{3}$ satisfies the functional equations (1.1) and (1.2), which are called cubic functional equations and every solution of the cubic functional equations is said to be a cubic mapping.

Let \mathcal{X} be an orthogonality space and \mathcal{Y} a real Banach space. A mapping f : $\mathcal{X} \rightarrow \mathcal{Y}$ is called orthogonally cubic if it satisfies any one of the so-called orthogonally cubic functional equations

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.3}
\end{equation*}
$$

or

$$
\begin{align*}
& f(x+y+2 z)+f(x+y-2 z)+f(2 x)+f(2 y) \tag{1.4}\\
= & 2 f(x+y)+4 f(x+z)+4 f(x-z)+4 f(y+z)+4 f(y-z)
\end{align*}
$$

for all $x, y, z \in \mathcal{X}$ with $x \perp y, y \perp z, x \perp z$. Putting $y=0$ in (1.3) and $y=z=0$ in (1.4) we get $f(2 x)=8 f(x)$ whence $f\left(2^{n} x\right)=8^{n} f(x) \quad(x \in \mathcal{X}, n \in \mathbb{N})$ for all orthogonally cubic mapping f.

In this paper, we investigate the Hyers-Ulam-Rassias stability of the orthogonally cubic functional equations (1.3) and (1.4).

2. Stability of orthogonally cubic functional equations

Throughout this section, (\mathcal{X}, \perp) denotes an orthogonality normed space with the norm $\|\cdot\|_{\mathcal{X}}$ and $\left(\mathcal{Y},\|\cdot\|_{\mathcal{Y}}\right)$ is a Banach space. We aim to study the conditional stability problems for

$$
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x)
$$

and

$$
\begin{aligned}
& f(x+y+2 z)+f(x+y-2 z)+f(2 x)+f(2 y) \\
= & 2 f(x+y)+4 f(x+z)+4 f(x-z)+4 f(y+z)+4 f(y-z)
\end{aligned}
$$

where $x, y, z \in \mathcal{X}$ with $x \perp y, y \perp z, x \perp z$ and $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping.
Theorem 2.1. Let θ and $p \quad(p<3)$ be nonnegative real numbers. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with $f(0)=0$ fulfilling

$$
\begin{align*}
& \|f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)\|_{\mathcal{Y}} \tag{2.1}\\
\leq & \theta\left(\|x\|_{\mathcal{X}}^{p}+\|y\|_{\mathcal{X}}^{p}\right)
\end{align*}
$$

for all $x, y \in \mathcal{X}$ with $x \perp y$. Then there exists a unique orthogonally cubic mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{\mathcal{Y}} \leq \frac{\theta}{16-2^{p+1}}\|x\|_{\mathcal{X}}^{p} \tag{2.2}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. Putting $y=0$ in (2.1), we get

$$
\begin{equation*}
\|2 f(2 x)-16 f(x)\|_{\mathcal{Y}} \leq \theta\|x\|_{\mathcal{X}}^{p} \tag{2.3}
\end{equation*}
$$

for all $x \in \mathcal{X}$, since $x \perp 0$. So

$$
\left\|f(x)-\frac{1}{8} f(2 x)\right\|_{\mathcal{Y}} \leq \frac{\theta}{16}\|x\|_{\mathcal{X}}^{p}
$$

for all $x \in \mathcal{X}$. Hence

$$
\begin{equation*}
\left\|\frac{1}{8^{n}} f\left(2^{n} x\right)-\frac{1}{8^{m}} f\left(2^{m} x\right)\right\|_{\mathcal{Y}} \leq \frac{\theta}{16} \sum_{k=n}^{m-1} \frac{2^{p k}}{8^{k}}\|x\|_{\mathcal{X}}^{p} \tag{2.4}
\end{equation*}
$$

for all nonnegative integers n, m with $n<m$. Thus $\left\{\frac{1}{8^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence in \mathcal{Y}. Since \mathcal{Y} is complete, there exists a mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ defined by

$$
T(x):=\lim _{n \rightarrow \infty} \frac{1}{8^{n}} f\left(2^{n} x\right)
$$

for all $x \in \mathcal{X}$. Letting $n=0$ and $m \rightarrow \infty$ in (2.4), we get the inequality (2.2). It follows from (2.1) that

$$
\begin{aligned}
& \|T(2 x+y)+T(2 x-y)-2 T(x+y)-2 T(x-y)-12 T(x)\|_{\mathcal{Y}} \\
= & \lim _{n \rightarrow \infty} \frac{1}{8^{n}} \| f\left(2^{n}(2 x+y)\right)+f\left(2^{n}(2 x-y)\right)-2 f\left(2^{n}(x+y)\right) \\
& -2 f\left(2^{n}(x-y)\right)-12 f\left(2^{n} x\right) \|_{\mathcal{Y}} \\
\leq & \lim _{n \rightarrow \infty} \frac{2^{p n} \theta}{8^{n}}\left(\|x\|_{\mathcal{X}}^{p}+\|y\|_{\mathcal{X}}^{p}\right)=0
\end{aligned}
$$

for all $x, y \in \mathcal{X}$ with $x \perp y$. So

$$
T(2 x+y)+T(2 x-y)-2 T(x+y)-2 T(x-y)-12 T(x)=0
$$

for all $x, y \in \mathcal{X}$ with $x \perp y$. Hence $T: \mathcal{X} \rightarrow \mathcal{Y}$ is an orthogonally cubic mapping. Let $Q: \mathcal{X} \rightarrow \mathcal{Y}$ be another orthogonally cubic mapping satisfying (2.2). Then

$$
\begin{aligned}
\|T(x)-Q(x)\|_{\mathcal{Y}} & =\frac{1}{8^{n}}\left\|T\left(2^{n} x\right)-Q\left(2^{n} x\right)\right\|_{\mathcal{Y}} \\
& \leq \frac{1}{8^{n}}\left(\left\|f\left(2^{n} x\right)-T\left(2^{n} x\right)\right\|_{\mathcal{Y}}+\left\|f\left(2^{n} x\right)-Q\left(2^{n} x\right)\right\|_{\mathcal{Y}}\right) \\
& \leq \frac{\theta}{8-2^{p}} \cdot \frac{2^{p n}}{8^{n}}\|x\|_{\mathcal{X}}^{p}
\end{aligned}
$$

which tends to zero for all $x \in \mathcal{X}$. So we have $T(x)=Q(x)$ for all $x \in \mathcal{X}$. This proves the uniqueness of T.

Theorem 2.2. Let θ and $p \quad(p>3)$ be nonnegative real numbers. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with $f(0)=0$ fulfilling

$$
\|f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)\|_{\mathcal{Y}} \leq \theta\left(\|x\|_{\mathcal{X}}^{p}+\|y\|_{\mathcal{X}}^{p}\right)
$$

for all $x, y \in \mathcal{X}$ with $x \perp y$. Then there exists a unique orthogonally cubic mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{\mathcal{Y}} \leq \frac{\theta}{2^{p+1}-16}\|x\|_{\mathcal{X}}^{p} \tag{2.5}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. It follows from (2.3) that

$$
\left\|f(x)-8 f\left(\frac{x}{2}\right)\right\|_{\mathcal{Y}} \leq \frac{\theta}{2^{p+1}}\|x\|_{\mathcal{X}}^{p}
$$

for all $x \in \mathcal{X}$. So

$$
\begin{equation*}
\left\|8^{n} f\left(\frac{x}{2^{n}}\right)-8^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{\mathcal{Y}} \leq \frac{\theta}{2^{p+1}} \sum_{k=n}^{m-1} \frac{8^{k}}{2^{p k}}\|x\|_{\mathcal{X}}^{p} \tag{2.6}
\end{equation*}
$$

for all nonnegative integers n, m with $n<m$. Thus $\left\{8^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in \mathcal{Y}. Since \mathcal{Y} is complete, there exists a mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ defined by

$$
T(x):=\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in \mathcal{X}$. Letting $n=0$ and $m \rightarrow \infty$ in (2.6), we get the inequality (2.5).
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.3. Let θ and $p \quad(p<3)$ be nonnegative real numbers. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with $f(0)=0$ fulfilling

$$
\begin{align*}
& \| f(x+y+2 z)+f(x+y-2 z)+f(2 x)+f(2 y)-2 f(x+y) \tag{2.7}\\
& -4 f(x+z)-4 f(x-z)-4 f(y+z)-4 f(y-z) \|_{\mathcal{Y}} \\
\leq \quad & \theta\left(\|x\|_{\mathcal{X}}^{p}+\|y\|_{\mathcal{X}}^{p}+\|z\|_{\mathcal{X}}^{p}\right)
\end{align*}
$$

for all $x, y, z \in \mathcal{X}$ with $x \perp y, y \perp z$ and $x \perp z$. Then there exists a unique orthogonally cubic mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{\mathcal{Y}} \leq \frac{\theta}{8-2^{p}}\|x\|_{\mathcal{X}}^{p} \tag{2.8}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. Putting $y=z=0$ in (2.7), we get

$$
\begin{equation*}
\|f(2 x)-8 f(x)\|_{\mathcal{Y}} \leq \theta\|x\|_{\mathcal{X}}^{p} \tag{2.9}
\end{equation*}
$$

for all $x \in \mathcal{X}$, since $x \perp 0$ and $0 \perp 0$. So

$$
\left\|f(x)-\frac{1}{8} f(2 x)\right\|_{\mathcal{Y}} \leq \frac{\theta}{8}\|x\|_{\mathcal{X}}^{p}
$$

for all $x \in \mathcal{X}$. Hence

$$
\begin{equation*}
\left\|\frac{1}{8^{n}} f\left(2^{n} x\right)-\frac{1}{8^{m}} f\left(2^{m} x\right)\right\| \mathcal{Y} \leq \frac{\theta}{8} \sum_{k=n}^{m-1} \frac{2^{p k}}{8^{k}}\|x\|_{\mathcal{X}}^{p} \tag{2.10}
\end{equation*}
$$

for all nonnegative integers n, m with $n<m$. Thus $\left\{\frac{1}{8^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence in \mathcal{Y}. Since \mathcal{Y} is complete, there exists a mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ defined by

$$
T(x):=\lim _{n \rightarrow \infty} \frac{1}{8^{n}} f\left(2^{n} x\right)
$$

for all $x \in \mathcal{X}$. Letting $n=0$ and $m \rightarrow \infty$ in (2.10), we get the inequality (2.8). It follows from (2.7) that

$$
\begin{aligned}
& \| T(x+y+2 z)+T(x+y-2 z)+T(2 x)+T(2 y)-2 T(x+y) \\
& -4 T(x+z)-4 T(x-z)-4 T(y+z)-4 T(y-z) \|_{\mathcal{Y}} \\
= & \lim _{n \rightarrow \infty} \frac{1}{8^{n}} \| f\left(2^{n}(x+y+2 z)\right)+f\left(2^{n}(x+y-2 z)\right)+f\left(2^{n+1} x\right)+f\left(2^{n+1} y\right) \\
& -2 f\left(2^{n}(x+y)\right)-4 f\left(2^{n}(x+z)\right)-4 f\left(2^{n}(x-z)\right)-4 f\left(2^{n}(y+z)\right)-4 f\left(2^{n}(y-z)\right) \|_{\mathcal{Y}} \\
\leq & \lim _{n \rightarrow \infty} \frac{2^{p n} \theta}{8^{n}}\left(\|x\|_{\mathcal{X}}^{p}+\|y\|_{\mathcal{X}}^{p}+\|z\|_{\mathcal{X}}^{p}\right)=0
\end{aligned}
$$

for all $x, y, z \in \mathcal{X}$ with $x \perp y, y \perp z$ and $x \perp z$. So

$$
\begin{aligned}
& T(x+y+2 z)+T(x+y-2 z)+T(2 x)+T(2 y)-2 T(x+y) \\
& \quad-4 T(x+z)-4 T(x-z)-4 T(y+z)-4 T(y-z)=0
\end{aligned}
$$

for all $x, y, z \in \mathcal{X}$ with $x \perp y, y \perp z$ and $x \perp z$. Hence $T: \mathcal{X} \rightarrow \mathcal{Y}$ is an orthogonally cubic mapping. Let $Q: \mathcal{X} \rightarrow \mathcal{Y}$ be another orthogonally cubic mapping satisfying (2.8). Then

$$
\begin{aligned}
\|T(x)-Q(x)\|_{\mathcal{Y}} & =\frac{1}{8^{n}}\left\|T\left(2^{n} x\right)-Q\left(2^{n} x\right)\right\|_{\mathcal{Y}} \\
& \leq \frac{1}{8^{n}}\left(\left\|f\left(2^{n} x\right)-T\left(2^{n} x\right)\right\|_{\mathcal{Y}}+\left\|f\left(2^{n} x\right)-Q\left(2^{n} x\right)\right\|_{\mathcal{Y}}\right) \\
& \leq \frac{2 \theta}{8-2^{p}} \cdot \frac{2^{p n}}{8^{n}}\|x\|_{\mathcal{X}}^{p},
\end{aligned}
$$

which tends to zero for all $x \in \mathcal{X}$. So we have $T(x)=Q(x)$ for all $x \in \mathcal{X}$. This proves the uniqueness of T.
Theorem 2.4. Let θ and $p(p>3)$ be nonnegative real numbers. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with $f(0)=0$ fulfilling

$$
\begin{aligned}
\| f(x+y+2 z) & +f(x+y-2 z)+f(2 x)+f(2 y)-2 f(x+y) \\
& -4 f(x+z)-4 f(x-z)-4 f(y+z)-4 f(y-z) \| \mathcal{Y} \\
& \leq \theta\left(\|x\|_{\mathcal{X}}^{p}+\|y\|_{\mathcal{X}}^{p}+\|z\|_{\mathcal{X}}^{p}\right)
\end{aligned}
$$

for all $x, y, z \in \mathcal{X}$ with $x \perp y, y \perp z$ and $x \perp z$. Then there exists a unique orthogonally cubic mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{\mathcal{Y}} \leq \frac{\theta}{2^{p}-8}\|x\|_{\mathcal{X}}^{p} \tag{2.11}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. It follows from (2.9) that

$$
\left\|f(x)-8 f\left(\frac{x}{2}\right)\right\|_{\mathcal{Y}} \leq \frac{\theta}{2^{p}}\|x\|_{\mathcal{X}}^{p}
$$

for all $x \in \mathcal{X}$. So

$$
\begin{equation*}
\left\|8^{n} f\left(\frac{x}{2^{n}}\right)-8^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{\mathcal{Y}} \leq \frac{\theta}{2^{p}} \sum_{k=n}^{m-1} \frac{8^{k}}{2^{p k}}\|x\|_{\mathcal{X}}^{p} \tag{2.12}
\end{equation*}
$$

for all nonnegative integers n, m with $n<m$. Thus $\left\{8^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in \mathcal{Y}. Since \mathcal{Y} is complete, there exists a mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ defined by

$$
T(x):=\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in \mathcal{X}$. Letting $n=0$ and $m \rightarrow \infty$ in (2.12), we get the inequality (2.11). The rest of the proof is similar to the proof of Theorem 2.3.

References

[1] C. Baak and M. S. Moslehian, On the stability of J^{*}-homomorphisms, Nonlinear Anal.-TMA, 63(2005), 42-48.
[2] C. Baak, H. Y. Chu and M. S. Moslehian, On linear n-inner product preserving mappings, Math. Inequ. Appl., 9(3)(2006), 453-464.
[3] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1(1935), 169-172.
[4] S. O. Carlsson, Orthogonality in normed linear spaces, Ark. Mat., 4(1962), 297-318.
[5] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003.
[6] C. R. Diminnie, A new orthogonality relation for normed linear spaces, Math. Nachr., 114(1983), 197-203.
[7] F. Drljević, On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd), 54(1986), 63-71.
[8] M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math., 38(1989), 28-40.
[9] R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math., 43(1995), 143-151.
[10] S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math., 58(1975), 427-436.
[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat'l. Acad. Sci. U.S.A., 27(1941), 222-224.
[12] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[13] R. C. James, Orthogonality in normed linear spaces, Duke Math. J., 12(1945), 291302.
[14] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61(1947), 265-292.
[15] K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2002), 867-878.
[16] Y. Jung and I. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306(2005), 752-760.
[17] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2001.
[18] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37(3)(2006), 361-376.
[19] M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl., 318(1)(2006), 211-223.
[20] M. S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Differ. Equations. Appl., 11(11)(2005), 999-1004.
[21] L. Paganoni and J. Rätz, Conditional function equations and orthogonal additivity, Aequationes Math., 50(1995), 135-142.
[22] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[23] Th. M. Rassias(ed.), Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston, Londonm, 2003.
[24] J. Rätz, On orthogonally additive mappings, Aequationes Math., 28(1985), 35-49.
[25] K. Sundaresan and O. P. Kapoor, T-orthogonality and nonlinear functionals on topological vector spaces Canad. J. Math., 25(1973), 1121-1131.
[26] Gy. Szabó, Sesquilinear-orthogonally quadratic mappings, Aequationes Math., 40(1990), 190-200.
[27] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.
[28] F. Vajzović, Über das Funktional H mit der Eigenschaft: $(x, y)=0 \Rightarrow H(x+y)+$ $H(x-y)=2 H(x)+2 H(y)$, Glasnik Mat. Ser. III, 22(1967), 73-81.

[^0]: Received October 31, 2005.
 2000 Mathematics Subject Classification: 39B55, 39B52, 39B82.
 Key words and phrases: Hyers-Ulam-Rassias stability, orthogonality, orthogonally cubic functional equation, orthogonality space, cubic mapping.

