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ABSTRACT. Let f denote a mapping from an orthogonality space (X, L) into a real Banach
space ). In this paper, we prove the Hyers—Ulam—Rassias stability of the orthogonally
cubic functional equations f(2x +y) + f(2z —y) = 2f(x +y) + 2f(z — y) + 12f(x) and
flz+y+22)+ fle+y—22)+ f2z)+ f(2y) =2f(x+y) +4f(x+2)+4f(x —2)+4f(y+
2)+4f(y—z), wherez Ly,y L z,x L 2.

1. Introduction and preliminaries

The stability problem of functional equations originated from the following ques-
tion of Ulam [27]: Under what condition does there is an additive mapping near an
approzimately additive mapping? In 1941, Hyers [11] gave a partial affirmative an-
swer to the question of Ulam in the context of Banach spaces. In 1978, Th. M.
Rassias [22] extended the theorem of Hyers by considering the unbounded Cauchy
difference || (@ +y) — £(z) — FW)I| < (27 + lyll7), (¢ >0, p € [0,1)). The result
of Rassias has provided a lot of influence in the development of what we now call
Hyers—Ulam—Rassias stability of functional equations. During the last decades sev-
eral stability problems of functional equations have been investigated in the spirit
of Hyers-Ulam-Rassias. The reader is referred to [1], [2], [5], [12], [17], [23] and
references therein for detailed information on stability of functional equations.

There are several concepts of orthogonality in an arbitrary real Banach space
X which are generalizations of orthogonality in the inner product spaces. These
are of intrinsic geometric interest and have been studied by many mathematicians.
Among them we recall the following ones:
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(i) Trivial L,: = 1,0, 0 L, z for all z € X and for non-zero elements z,y € X,
x 1, y if and only if x,y are linearly independent.

Birkhoff-James Lp: x Lpyif ||z| <|z+ ayl| for all scalars «; cf. [3], [14].

)
(iii) Phythagorean Lp: x Lpyif |z +y||* = [[z]* + [ly[|* (see [13])
) Isosceles Lr:x Lryif ||z +y| = ||z — vyl (see [13])

)

Diminnie ~ Lp: = Lp y if sup{f(z)g(y) — f(y)g(z) : f,g € §*} = ||z[llyll
where S* is the unit sphere of the dual space X* of X; cf. [6]

(vi) Carlsson Le: @ Loy if either Y00 oy |8 + v;y||* = 0 where m > 2 and
a; # 0,0;,7; are fixed real numbers such that " ;67 = > a2 =
07 Z?il a1ﬁ2’71 = ].; Cf. [4]

(vil) T-orthogonality — Lp: Given a linear mapping T : X — X*, = Ly y if
T(x)(y) = 0 cf. [25

In 1975, Gudder and Strawther [10] defined an abstract orthogonality relation
1 by a system consisting of five axioms and described the general semi-continuous
real-valued solution of conditional Cauchy functional equation f(xz +y) = f(z) +
fly), = L y. In 1985, Rtz [24] introduced a new definition of orthogonality by
using more restrictive axioms than those of Gudder and Strawther. A (normed)
linear space X equipped with an orthogonal relation L in any appropriate sense
containing the conditions L 0, 0 L z (z € A) is called an orthogonality (normed)
space. In 1995, Ger and Sikorska [9] investigated the so-called orthogonal stability
of the Cauchy functional equation in the sense of Ratz. This result then generalized
by Moslehian [19] in the framework of Banach modules.

The orthogonally quadratic equation f(x+y)+ f(x—y) =2f(x)+2f(y), v Ly
was first studied by Vajzovi¢ [28] when X is a Hilbert space, Y is the scalar field,
f is continuous and 1 means the Hilbert space orthogonality. Later, Drljevié [7],
Fochi [8] and Szabé [26] generalized this result. An investigation of the orthogonal
stability of the quadratic equation may be found in [20] (see also [18]). In [15], Jun
and Kim considered the following cubic functional equation

(1.1) fRr+y)+ f(2z —y) =2f(z+y) +2f(xz —y) + 12f ().

In [16], Jung and Chang considered the following cubic functional equation

(1.2) flx4+y+22)+ fle+y—22) + f(22) + f(2y)
= 2f(x+y)+4f(x+2)+4f(x—2)+4f(y+2) +4f(y — 2).
It is easy to show that the function f(x) = 3 satisfies the functional equations

(1.1) and (1.2), which are called cubic functional equations and every solution of
the cubic functional equations is said to be a cubic mapping.
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Let X be an orthogonality space and ) a real Banach space. A mapping f :
X — Y is called orthogonally cubic if it satisfies any one of the so-called orthogonally
cubic functional equations

(1.3) fRz+y)+ [z —y)=2f(x+y) +2f(z —y) + 12f (),
(1.4) flx+y+22)+ fle+y—22)+ f(2x) + f(2y)

= 2f(x+y)+4f(x+2)+4f(x —2)+4f(y+2) +4f(y — 2)

forall z,y,z€ X withz Ly, y L 2z, « L z. Puttingy=01in (1.3) andy=2=0
in (1.4) we get f(2x) = 8f(x) whence f(2"z) = 8" f(z) (x € X,n € N) for all
orthogonally cubic mapping f.

In this paper, we investigate the Hyers—-Ulam—Rassias stability of the orthogo-
nally cubic functional equations (1.3) and (1.4).

2. Stability of orthogonally cubic functional equations

Throughout this section, (X, L) denotes an orthogonality normed space with
the norm || - [|x and (Y, || - ||y) is a Banach space. We aim to study the conditional
stability problems for

fQx+y)+ f2r —y) =2f(x +y) +2f(x —y) + 12f(x),

and

fle+y+22)+ f(x+y—22)+ f(2x) + f(2y)
= 2f(z+y)+4f(x+2) +4f(x —2) +4f(y+2) +4f(y — 2)

where z,y,z € X withz Ly, y L 2, ¢ L zand f: X — ) is a mapping.

Theorem 2.1. Let 6 and p (p < 3) be nonnegative real numbers. Suppose that
f:X — Y is a mapping with f(0) =0 fulfilling

(2.1) 1f Rz +y)+ f2z —y) = 2f(x +y) = 2f(z —y) — 12f(2) |y
< O(l=ll% + llyll%)

forall x,y € X with x L y. Then there exists a unique orthogonally cubic mapping
T:X — Y such that

0
(2.2) If () = T@)lly < Te—oprr Izl

forallx e X.
Proof. Putting y = 0 in (2.1), we get

(2:3) 12f(22) = 16f (x)]ly < O|=[l%
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for all x € X, since x 1L 0. So
1 0
17) = sr@)lly < el
for all x € X. Hence

m—1

1, T, 0 2rk
(2.4) ||87Lf(2 z) — 87”]0(2 z)lly < 6 ];L 87\@”3{

for all nonnegative integers n,m with n < m. Thus {g: f(2"z)} is a Cauchy se-
quence in Y. Since ) is complete, there exists a mapping 7" : X — ) defined
by

T(z):= lim if(2”ac)

n—oo M

for all z € X. Letting n = 0 and m — oo in (2.4), we get the inequality (2.2). It
follows from (2.1) that

Tz +y) + T(22 —y) — 20w +y) — 20(x — y) — 127(a) |
T (22 +9) + (222 — ) — 22" (2 + )
2f(2"x —y) ~ 12f(2"0)]ly

he 20 b)—0
Jim =2 (el + ) =

IN

for all x,y € X with z L y. So
TRzx+y)+TQ2zx—y)—2T(x+y) —2T(x —y) — 12T(x) =0

for all z,y € X with x 1L y. Hence T': X — ) is an orthogonally cubic mapping.
Let @ : X — Y be another orthogonally cubic mapping satisfying (2.2). Then

1T (z) — Q(x)]ly

1
g I7(2"2) = QE")lly

< %(Ilf@”x) —TQ"2)|ly +1£2"2) — Q(2"x)[y)
0
8 —2r

2pm
< ‘ 87||33||§a

which tends to zero for all x € X. So we have T'(z) = Q(z) for all x € X. This
proves the uniqueness of T O

Theorem 2.2. Let 6 and p (p > 3) be nonnegative real numbers. Suppose that
f: X — Y is a mapping with f(0) =0 fulfilling

If22+y) + (22 —y) = 2f(x +y) = 2f(x —y) — 12f(2) ]|y < O(ll=Il% + [lyll%)
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forall z,y € X with x L y. Then there exists a unique orthogonally cubic mapping
T:X — Y such that

0
(2.5) [f(z) = T(@)|ly < mﬂwllé}
forallx e X.
Proof. Tt follows from (2.3) that
x 0 »
[ f(z) = Sf(§)||y < %Hxnx
for all z € X. So
0 m—1 8k

(26) 1877 (0) = "1l < s 3 gl

=n

for all nonnegative integers n, m with n < m. Thus {8" f(5%)} is a Cauchy sequence

in ). Since ) is complete, there exists a mapping T : X — ) defined by

)

for all x € X. Letting n = 0 and m — oo in (2.6), we get the inequality (2.5).
The rest of the proof is similar to the proof of Theorem 2.1. O

T(x):= lim 8" f( -

n—o00 n

Theorem 2.3. Let 6 and p (p < 3) be nonnegative real numbers. Suppose that
f:X = Y is a mapping with f(0) =0 fulfilling

(2.7) [f(z+y+22) + flx+y—22) + f(22) + f(2y) — 2f(z + y)
—Af(x+2z)—4Af(x —2) —4f(y+2) —4f(y — 2)|ly
< O(llzl% + Iyl + I=1%)

for all x;y,z € X with x L y,y 1L z and x L z. Then there exists a unique
orthogonally cubic mapping T : X — ) such that

0
28) 1) = T@)ly < 2ol
forallxe X.
Proof. Putting y = 2z =0 in (2.7), we get
(2.9) 1f(22) = 8f(2)lly < Olll%

for all x € X, since z 1. 0 and 0 L 0. So

0
15~ 5F@a)ly < &l
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for all z € X. Hence

1, 1, 0 <= 2rk
(2.10) Ignf(2"e) = g f(2™2)lly < g > Fral e ¥
k=n

for all nonnegative integers n,m with n < m. Thus {gf(2"z)} is a Cauchy se-
quence in Y. Since ) is complete, there exists a mapping 7" : X — ) defined
by
1
T(z) ;= lim S—Hf(?”x)

for all z € X. Letting n = 0 and m — oo in (2.10), we get the inequality (2.8). It
follows from (2.7) that

I T(x+y+22)+T(x+y—22)+T(2z) + T(2y) — 2T (z + y)
—AT(x+2) —4T(x — 2) —4T(y + 2) — 4T (y — 2) ||y
= lim 8%Hf<2”(a: +y+22)) + f(2 (@ +y — 22)) + (2" ) + F(2" )
—2f(2"(z +y)) —4f2"(x + 2)) —4f(2"(x — 2)) —4f(2"(y + 2)) — 4f(2"(y — 2))[ly

L2 P P p
< i == (el + ol + 121%) =0
for all x,y,z € X withx Ly, y L zand x L 2. So

T4+y+22)+T(x+y—22)+T(2x)+T(2y) —2T(x +y)
—AT(x+2) —4T(x — 2) —4T(y+2) —4T(y — 2) =0

forallz,y,z € X withx L y,y L zand z L z. Hence T : X — ) is an orthogonally
cubic mapping. Let @) : X — Y be another orthogonally cubic mapping satisfying
(2.8). Then

1T (z) — Q(x)]ly

7@ )~ Q)

< %(Ilf@"w) —T2")[ly + If(2"2) = Q(2"z)|ly)

20 2pn

<

which tends to zero for all z € X. So we have T'(z) = Q(x) for all x € X. This
proves the uniqueness of 7. O

Theorem 2.4. Let 6 and p (p > 3) be nonnegative real numbers. Suppose that
f:X =Y is a mapping with f(0) = 0 fulfilling
[f(x+y+22) + fle+y—22)+f22)+f(2y) - 2f(z+y)
— Af(x+2) —4f(z—2) —4f(y+2) —4f(y — 2)lly
Oll=ll% + llyll% + 1lzI1%)

IN
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for all x;y,z € X with x L y,y L 2z and x L z. Then there exists a unique
orthogonally cubic mapping T : X — Y such that

(211) 1£@) ~ T@)ly < 5o lally

forallx e X.
Proof. Tt follows from (2.9) that

0
1£@) = 8F(Slly < 55 el

forall z € X. So

noes X e & f "~ 8k
(2.12) I8 () 87 Fo )y < o 3 el

k=n

for all nonnegative integers n, m with n < m. Thus {8" f(5%)} is a Cauchy sequence
in ). Since ) is complete, there exists a mapping 7' : X — ) defined by

T(z) = lim 8nf(23n)

n—oo

for all x € X. Letting n = 0 and m — oo in (2.12), we get the inequality (2.11).
The rest of the proof is similar to the proof of Theorem 2.3. 0
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