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Abstract. The eigenvalue problems arise in the analysis of stability of traveling waves

or rest state solutions are currently dealt with, using the Evans function method. In the

literature, it had been shown that, use of this method is not straightforward even in very

simple examples. Here an extended “variational” method to solve the eigenvalue problem

for the higher order differential equations is suggested. The extended method is matched

to the well known variational iteration method. The criteria for validity of the eigenfunc-

tions and eigenvalues obtained is presented. Attention is focused to find eigenvalue and

eigenfunction solutions of the Kuramoto-Slivashinsky and (K[p,q]) equation.

1. Introduction

Traveling waves TW emerge as solutions of nonlinear evolution equations EE in
varieties of systems in physics, chemistry and biological sciences [1-8]. They have
numerous types of geometrical structures as fronts, backs, wave trains or elliptic
waves. They are “permanent”nonlinear wave solutions for a wide class of nonlinear
evolution equations in physics and in reaction diffusion equations describing biolog-
ical and chemical systems. The stability analysis of these waves is crucial in the
sense that, relative to chemical systems, it specifies to what extent resultants of a
chemical reactions are well routed. If TW are unstable then absolute or convective
instability may be inspected. The stability analysis is carried out as follows: the
evolution equation is transformed to a TW one’s, and by linearizing the evolution
equation near the TW solutions obtained, gives rise to a linear equation in the dis-
turbances. By bearing in mind finiteness of the boundary conditions of solutions at
±∞, or of periodic boundary conditions the resultant eigenvalue problem is solved.
There have been some advances over recent years in the development of stability
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techniques for nonlinear waves such as fronts, pluses and wave trains. A motivat-
ing objective behind these stability methods is to inspect the concepts that can be
adopted in applications. One of these concepts is that the stability of TW solution
depends on their geometrical structure, if they are monotone or not. That is the
stability of fronts, pulses or elliptic TW, generated in a system is indeed different.
This yields a relationship between the geometrical (or topological) structure of the
wave itself and its stability properties. By this analog, one can discriminate between
stable and unstable waves in this system. Another example is the Vakhitov-Kolokov
criterion [15, 16], which is applicable to systems such as the nonlinear Schrödinger
equation. The existence of such rules for nonlinear waves with more complicated
structure had motivated much of the research in this area.

For a set of (vector) EE the problem is too complicated. So that, solutions
were obtained mainly, numerically in the literature by using the Evans function
method [5]. It had been proved that this function is analytic and free from the
independent variable in the equations for the spectral problems. It depends only
on the eigenvalue parameter and the roots of this function produce the required
solutions [6, 9]. The formulation of this method requires writing the linearized
equations as a system of first order ODE. The system obtained is then solved by
using exponential dichotomy. It had been shown that the use of the Evans function
is not straightforward [10].

The numerical computation of the Evans function is not straightforward as the
boundary conditions are taken at finite values of the space variable. A drawback of
this approximation is that pseudo-eigenvalues may emerge in numerical computa-
tions.

To overcome the lack of information about eigenvalues, further numerical algo-
rithms had been presented [11]. They are based on the compound matrix where
exterior algebra is involved .

Different approaches had been proposed which are based on various aspects;
Approaches of topological (or geometrical structure) invariance of solutions (due to
small disturbances when linearizing an EE) [12, 13, 14, 20].

Our aim here is to present an approach that fills the gap between the abstract
approach and the applications. It is based mainly on the invariance of geometrical
structure of TW solutions under small disturbances and the canonical transforma-
tions. A variational approach is then proposed and for numerical objectives, this
approach is matched to the variational iteration method.

2. General Formulation

We consider an evolution equation as

(2.1) vt + F0(v, vx, vxx, vxxx, ..., v
(j)
x ) = 0.
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The equation (2.1) is translational invariant in space and time, the it admits
a traveling wave solution. To this end, we make the transformations t = t and
z = x− ct, and (2.1) becomes

(2.2) vt − cvzz + F (v, vz, vzz, vzzz, ..., v
(j)
z ) = 0.

By setting vt = 0 , we get

(2.3) −cv′o + F (vo, v
′
o, v
′′
o , v
′′′
o , ..., v

(j)
o ) = 0, v′o =

dvo
dz

.

The integrability of (2.1) and (2.3) are performed by using the Painleve’ test
in [18] and [19]. If the equation (2.3) is (completely or partially) integrable then
explicit solutions vo could be found. We mention in some specific cases of non-
integrable equation (2.3), a particular solution may be obtained. There are a variety
of methods for finding these solutions [17]. To study the stability of TW solutions
vo = vo(z), we linearize (2.2) near these solutions, namely

(2.4) v(z, t) = v0(z) + V (z)eλt,

and by assuming that the function F is continuously differentiable in the arguments,
we get

(2.5) λV −cV ′+A0(z)V +A1(z)V ′+A2(z)V ′′+...+Aj(z)V
(j) = 0, Ai(z) =

∂iF

∂v
(i)
o

.

The eigenvalue problem (2.5) is subjected to the boundary conditions namely
V (±M) = 0. When M → ∞, this holds for front, back or pulse waves but when
M is finite this corresponds to the case when the equation (2.3) assumes a periodic
solution (or wave train). In the later case, those are periodic boundary conditions
and they may be written V (±M) = const. . We study the eigenvalue problem (2.5)
by distinguishing two cases namely when (i) j = 2 (for the second order case) and
(ii) j ≥ 3 (for higher orders). In each case we may consider M →∞ or M is finite.
Here, attention is focused to the case when M →∞.

Here the solution of the eigenvalue problem (2.5) when j = 2 is treated by us-
ing the variational approach while when j ≥ 3, an extended variational approach is
used. These two approaches are matched to the variational iteration method (VIM).

We mention that λ = 0 is an eigenvalue of (2.5) as when differentiating (2.3)
with respect to z and comparing the resultant equation with (2.5), we find that
they are identical when (the eigenfunction) V = v′o. In fact this result is a direct
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consequence of the topological invariance of solutions. For λ 6= 0, eigenfunctions
may be constructed, namely V (z) = V m(z) that correspond to λ(m) where mεZ+,
which is done by extrapolating the known eigenfunction V = v′o. The constructed
eigenfunctions are taken as zero approximations in the iteration scheme of the VIM.
In fact an appropriate selection of zero approximation are crucial for adjusting a
good error tolerance in higher “order” approximate solutions [25].

Now we return to (2.5) and consider the two cases when j = 2 and j ≥ 3
mentioned in the above.

(i) When j = 2, in this case we are concerned with a Sturm-Liouville boundary
value problem where (2.5) may be rewritten in the self-adjoint form. By considering
the cases of infinite or finite values of M , we have

(i1) When M →∞, the spectral set for TWS is determined by rewriting (2.5)
as a variational equation, namely

(2.6) λ = min
V

Lim
M→∞

∫
−M

M
P (z)(V ′2 − A0(z)

A2(z)
V 2)dz

Lim
M→∞

∫
−M

M P (z)
A2(z)

V 2(z)dz
, P (z) = e

∫ cz−A1(z)

A2(z)
dz
.

We point out that in (2.6) it was assumed that the two limits exist. When these
two limits do not exist, then (2.6) is rewritten in the “weak” sense as

(2.7) λ = −min
V

Lim
M→∞

∫
−M

M
(V (P (z)V ′)′ + A0(z)

A2(z)
V 2)dz∫

−M

M P (z)
A2(z)

V 2(z)dz
.

The variational method asserts that a minimizing sequence {Vn} exists and for
a classes of functions {V1} ⊂ {V2} ⊂ ..., and it holds that λ(1) ≥ λ(2) ≥ ...[21].

(i2) When M is finite the equation (2.6) holds formally by removing the limits.
It is worth noticing that although (2.6) and (2.7) are variational equations but

they also hold also exactly. Direct consequences from these equations are as follows.
We remark that the equations (2.6) and (2.7) are in general transcendental in λ,
so that solutions may be be real, complex or pure imaginary. Indeed the equation
(2.6) solves the eigenvalue problem for the stability of pulses ( when M →∞) or for
periodic solutions ( when M = consts.). While (2.7) solves the eigenvalue problem
for front or back waves. We remark that in this later case (2.7) is not transcendental
in λ, which is a direct result from the limit rules, so that the eigenvalues are all
real. This does not hold in the former case.

It is worth noticing that (2.6) or ((2.7)) are constructed from (2.5) by recasting
higher order derivative terms into one term. By bearing this idea in mind, we have

(ii) When j ≥ 3, We extend the use of the variational approach for the solution of
the eigenvalue problem (2.5). In this case, terms of second and first order derivatives
are also grouped together and recasted to one term.
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(ii1) In case of absence of second order term and when M → ∞, by a direct
integration, after multiplying by V , and by using that mentioned in the above, then
we get respectively, according to if the two limits exists or they do not exist,

(2.8) or

λ =
Lim
M→∞

∫
−M

MP (z)(V ′2−...)dz

Lim
M→∞

∫
−M

M P (z)
A2(z)

V 2(z)dz
, P (z) = e

∫ cz−A1(z)

A2(z)
dz

λ = − Lim
M→∞

∫
−M

M (V (P (z)V ′)′+...)dz∫
−M

M P (z)
A2(z)

V 2(z)dz
.

We mention that the terms that are expressed by the dots in (2.8) are too
lengthy and they could be obtained directly by using (2.5). So that it is irrelevant
that they are written here.

(ii2) When M is finite, the integrals in the RHS of (2.8) exist, so that the first
equation (2.8) holds, by removing the limits.

We return to the construction of eigenfunctions (as zero approximations), and
bear in mind that V (z) = v′0(z) is an eigenfunction that corresponds to λ = 0. It is
rewritten (or expanded) in terms of orthogonal polynomials that fit with boundary
conditions, namely V (z) = v′0(z) =

∑
k≥m0

akP
m0

k (ξ), where Pm0

k (ξ) is the associ-
ated Legendre polynomial where ξ := ξ(z). This fits with the different geometrical
structure of TWS of (2.3); front (or many fronts), backs or pulses, with ξ = tanh(.z).
When the solution of (2.3), namely v0(z) is periodic, then V (z) = v′0(z) , is expanded
also in Pm0

k (ξ) but here ξ = cos(.z) (or ξ = sin(.z)) to fit with periodic conditions.
It is worth noticing that in this case m0 is fixed.

When λ 6= 0 we let m0 varies and suggest that V (z) = V (m)(z). By substituting
into (2.6), we get λ(m). Indeed the pair (λ(m), V (m)(z)) do not satisfy exactly the
equation (2.5) and is considered as the zero order approximation to the solution
of the eigenvalue problem. For higher order approximations we use an appropriate
numerical method which is taken here the VIM. Thus approach for evaluating the
eigenvalues presented in above, namely the equations (2.6)-(2.8), is matched to the
variational iteration method VIM [25]. To this end, we write the approximate solu-

tion to the required pair as (V
(m)
n (z), λ

(m)
n ) together with the zero approximation,

(V
(m)
0 (z), λ

(m)
0 ) that was constructed in the above . The VIM suggests to write a

discretized form for (2.5) and on a finite interval [−M,M ] , we have

(2.9)
V

(m)
n = V

(m)
n−1 +

∫ z
−M

η(z1)R
(m)
n−1dz1, R

(m)
n−1 ≡ R

(m)
n−1(z, V

(m)
n−1 , ..., V

(m)(j)
n−1 ),

R
(m)
n−1 = L0(V

(m)
n−1 , V

(m)′
n−1 , ..) + L1(z, Ṽ

(m)
n−1 , Ṽ

(m)′
n−1 , ..), n ≥ 1

.

In (2.9) R
(m)
n := ± | E(m)

n | stands for the left hand side of (2.5) evaluated at V
(m)
n ,

and | E(m)
n |is the local error (or defect error [26]). L0(...) is in general linear in

the arguments and δṼ
(m,)
n = 0 is“ the restricted variation”. The function η(z), the
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Lagrange multiplier, is determined by the differential equation that results from

the variational equation δV
(m)
n = 0 and the boundary conditions. We mention

that (2.9) may hold on an infinite interval by taking the limit M →∞if the exists.

By the matching process, a discretization in the equation that determines the
eigenvalues, namely in the equations (2.6)-(2.8), is done. For instance, we consider
the equation (2.8) which becomes

(2.10) or

λ
(m)
n =

Lim
H→∞

∫
−H

HP (m)
n (z)(V (m)′2

n −...)dz

Lim
H→∞

∫
−H

H P
(m)
n (z)

A
(m)
2n (z)

V (m)2n(z)dz
, P

(m)
n (z) = e

∫ cz−A(m)
1n (z)

A(m)2n
(z)

dz

λ
(m)
n = −Lim

H→∞

∫
−H

H(V (m)
n (P (m)

n (z)V (m)′
n )′+...)dz

∫
−H

H P
(m)
n (z)

A
(m)
2n (z)

V
(m)2
n (z)dz

.

It is worth noticing that the construction of (or families of) eigenfunctions, as
zero approximations, is not unique. So that we need a criteria to test for validity
if the constructed set of eigenfunctions and the corresponding set of eigenvalues,

namely({V (m)
0 }, {λ(m)

0 }), mεZ+ are the right zero-approximate ones . We suggest

that the pair ({V (m)
0 }, {λ(m)

0 }), mεZ+ is the right zero-approximation if the set

({V (m)
n }, {λ(m)

n }),mεZ+converges, namely to ({V (m)
∞ }, {λ(m)

∞ }),mεZ+.Thus the cri-
teria is based on the convergence of the iterated set of solutions. This one of the
main results in this work.

To this end the convergence theorem for the VIM is invoked and its proof is
given in what follows.

For this aim and also for analyzing the error bound in the VIM, we assume for
simplicity that L0(V, ...) = −c ∂V∂z and L1(V, ...) is given by the rest terms in the

RHS of (2.5). By bearing this in mind and in (2.9) we setδV
(m)
n = 0 to get an

equation in η(z) that solves toη(z) = 1/c. For details see sections 4 and 5. We
assume that S is the set of approximate solutions of (2.9) , for a fixed m, with

tolerable error ; S = {V (m)
n , ‖ V (m)

n − V (m) ‖< ε}. It is worthy noticing that

‖ V (m)
n −V (m) ‖=‖ e(m)

n ‖is the :direct” step-wise error, and Maxn ‖ V (m)
n −V (m) ‖

is the absolute error.

We mention that S is closed under addition and multiplication by α, | α |< 1.

S is endowed by the norm ‖ . ‖S= Sup
V

(m)
n εS

‖ V (m)
n ‖ ,‖ V (m)

n ‖= Sup|z|<M |
V

(m)
n (z) | and ‖ E(m)

n ‖= Supz | E(m)
n (z) |, where | E(m)

n (z) |= ±R(m)
n (V, Vz, ..) ,

is the “indirect” step-wise error, and R
(m)
n (V, Vz, ..) was defined in the above. By

bearing (2.9) in mind we define the mapping M :on S; M (V
(m)
n ) = V

(m)
n+1 where

V
(m)
n+1 is given by the RHS of (2.9). Hereafter, for convenience the variable z will be

omitted . We show that under appropriate conditions M : S → S.
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Lemma 2.1. If R
(m)
n (z, V

(m)
n , (V

(m)
n )′, ..) is global Lipschitz condition with constant

µand M < 1/2µ, then M maps S into S.

Proof. It suffices to show that V
(m)
n+1εS and the rest of the proof is is done as in

convergence theorem.

The following lemma holds

Lemma 2.2. If V
(m)
0 εCk([−H, H]), Then (i) V

(m)
n εCk([−H, H]), n = 1, 2, .... (ii)

V
(m)
n (−H) = V

(m)
0 (−H). (iii) M(.)is monotone.

Proof. (i) and (ii) hold directly by induction .

(iii) We assume that V
(m)(1)
n , V

(m)(2)
n εS, V

(m)(1)
0 = V

(m)(2)
0 = V

(m)
0 then

M(V
(m)(1)
1 ) = M(V

(m)(2)
1 ) But when n = 1and in (2.9), it holds that M(V

(m)(1)
1 ) =

M(V
(m)(2)
1 ) iff V

(m)(1)
1 = V

(m)(2)
1 . At n = k, we assume that M(V

(m)(1)
k ) =

M(V
(m)(2)
k ) iff V

(m)(1)
k = V

(m)(2)
k . Also from (2.9) it holds that M(V

(m)(1)
k+1 ) =

M(V
(m)(2)
k+1 ) iff V

(m)(1)
k+1 = V

(m)(2)
k+1 . Thus M(.) is monotone.

In what follows we give a “new ”proof to the theorem of convergence to the
VIM and also analyze the error bounds for solutions that depend basically on the
error associated with the zero approximation. For instance the dicretization of (2.5)
is written in the form

(2.11) R(m)
n = −cV (m)′

n + (λV (m)
n +A

(m)
n0 V

(m)
n +A

(m)
n1 V

(m)′
n + ...+A

(m)
nj V (m)(j)

n )

where A
(m)
ni =

∂R(m)
n

∂V
(m)(i)
n

. We proceed to the proof and state that a function g(.)

is globally Lipschitz continuous if g(.) and g′(.) are locally Lipschitz continuous.
Here this definition is extended and we assume that g(i)(.), i = 0, 1, ..., j are locally
Lipschitz conditions.

3. Convergence Theorem and the Error Bound

In what follows, we give the convergence theorem for VIM.

Theorem 3.1. If A
(m)
in (...), i = 0, 1, ..., j,are locally Lipschitz continuous for all n,

and V
(m)
0 εCk([−ε/K, ε/K]) , where K is the Lipschitz constant and 0 < ε < 1 ,

then the sequence of solutions V
(m)
n n ≥ 1 converges uniquely to the exact solution

V (m).
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Proof. From the first assumption, it holds that the function R
(m)
n is global Lipschitz

condition so that

(3.1) | R(m)
n (z, V (m)

n , ..., V
(m)
nj )−R(m)

k (z, V
(m)
kj , ..., V

(m)
kj ) |≤ µ | V (m)

n − V (m)
k |

As η(z) = −1, and from (ii) of lemma 2.2, the equation (2.9), for n ≥ 0 , is
rewritten as

(3.2) V
(m)
n+1(z) = V

(m)
0 (−H) +

z∫
−M

R(m)
n (z, V (m)

n , ..., V
(m)
nj )dz1.

From (3.2) we have

(3.3)

|M(V
(m)
n )−M(V

(m)
k ) |≤

z∫
−M
| R(m)

n

(
z1, V

(m)
n (z1), . . . , V

(m)
nj (z1)

)
−R(m)

k

(
z1, V

(m)
k (z1), . . . , V

(m)(j)
k (z1)

)
| dz1 ≤

M∫
−M
| R(m)

n

(
z1, V

(m)
n (z1), . . . , V

(m)(j)
nj (z1)

)
−R(m)

n

(
z1, V

(m)
k (z1), . . . , V

(m)
kj (z1)

)
| dz1.

By using the equation (3.1), it holds that

(3.4) ‖M(V (m)
n )−M(V

(m)
k ) ‖≤ 2µM ‖ V (m)

n − V (m)
k ‖ .

In the equation (3.4), when M = ε/2µ, 0 < ε < 1, we get

(3.5) ‖M(V (m)
n )−M(V

(m)
k ) ‖≤ ε ‖ V (m)

n − V (m)
k ‖, 0 < ε < 1.

Thus the mapping M is a contraction mapping and also it is monotone. By the
fixed point theorem, then the sequence of solutions given by(2.9) has a unique fixed

point,. Thus Limn→∞V
(m)
n = V (m). This proof is completed.

Corollary. The sequence of solutions V
(m)
n (z) converges uniformly to V (m)(z) on

[−H1, H1], H1 < M < ε/2µ.

Proof. From the second condition in theorem 3.1, it holds that Limn→∞V
(m)(i)
n =

V (m)(i), i = 1, ..., j Also as A
(m)
in (...) is uniformally bounded then it holds that

Limn→∞A
(m)
ni = A

(m)
i , Consequently Limn→∞ | R(m)

n (V
(m)
n (z), ...) |= 0, −M ≤

z ≤M . Thus by taking the limit in the equation (2.9) we have Limn→∞V
(m)
n (z) =

V (m)(z) uniformly on −M ≤ z ≤M.
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An alternative proof for the point wise-convergence theorem for the VIM had
been given in [24].

Theorem 3.2. The sequence
{
λ
(m)
n

}
converges uniformly to the exact solution

λ(m) of (2.8).
The proof is direct as from theorem 3.1 , it holds that the limits when n→∞

of the denominator and of the numerator in the RHS of (2.10) exist.
For the stability criteria, we have the following lemma.

Lemma. If λn → λ when n → ∞, then the TWS is unstable if λ > λ0 > 0 and
it is stable if λ < λ0 < 0, where λ0 is the eigenvalue that corresponds to the zero
approximation.

3.1.the error bound

To analyze the error bound for the VIM, we start by finding the rate of
convergence.

1- Rate of convergence.

From (3.5) we have

(3.6)

∣∣∣V (m)
n+1(z)− V (m)

k+1 (z)
∣∣∣ < ε

∣∣∣V (m)
i,n (z)− V (m)

i,k (z)
∣∣∣ ,

−M < z < ε
2µ , 0 < ε < 1, i = 1, ...,m

and from the convergence theorem, it holds that

(3.7) ‖ V (m)
n+1 − V (m) ‖ / ‖ V (m)

n − V (m) ‖→ ε0, as n→∞,

and 0 ≤ ε0 ≤ ε < 1 . Thus the convergence could not be super linear and it is
sub-linear when ε0 = 0.

2- Error bound for two successive solutions

From the equation (3.2) and by using the q-mean value theorem, it holds that

(3.8) | E(m)
n (z)− E(m)

n−1(z) |< (z +M) | E(m)
n−1(ξ) |,−M < ξ < z.

3- Error bounds is related to the error in the zero approximation.
The equation (2.9) can be rewritten in the form

(3.9) V (m)
n (z)− V (m)

0 (t) = ∓
j=n−1∑
j=0

∫ z

−M
| E(m)

,j (s) | dz1.
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It holds that

(3.10)

(n− 1)(z +M) ‖ E(m)
0 (ξ) ‖<‖ E(m)

n (z)− E(m)
0 (z) ‖< n (z +M) ‖ E(m)

0 (ξ) ‖,
−H < ξ < z, i = 1, ...,m.

To summarize, an algorithmic form for the method is presented as follows:
(i) Given the eigenfunction V (m0) ≡ V (m0)(ξ) ≡ v′0(ξ), ξ := ξ(z) that corre-

sponds to the eigenvalue λ = 0 . It is expanded in terms of the associated Legendre
polynomials, namely V (m0)(ξ) = v′0(ξ) =

∑j=n0

j=k0
ajP

k0
j (ξ), for some k0 and n0 > k0.

(ii) For λ 6= 0 , construct the set of zero-eigenfunctions approximations ( namely,

V
(m)
0 (ξ) ), so that when m = m0, it reduces to V (m0)(ξ) in the step (i) and fix m.

(iii) Use (2.10) to compute the eigenvalue, namely λ
(m)
0 .

(iv) Use (2.9) to compute V
(m)
1 and use (2.10) to compute λ

(m)
1 .

(v) When
∥∥∥E(m)

1

∥∥∥ /∥∥∥V (m)
1

∥∥∥ <
∥∥∥E(m)

0

∥∥∥ /∥∥∥V (m)
0

∥∥∥ and
∣∣∣λ(m)

1 − λ(m)
0

∣∣∣ <| E1 |,
where | E1 | is a tolerable error, set n = 2 and continue.

(vi) Return to step (ii) and change the value of m.
It worth noticing that the conditions in the step (v) are necessary (but they are

not sufficient) for the pair (V
(m)
n , λ

(m)
n ) to converge when n→∞.

4. Applications

4.1. the Kuramoto-Sivashinsky equation (KS)

The KS equation arises in different areas in physics [14, 15, 16] and it reads

(4.1) ut + γuxx + uxxxx + uux = 0, 0 < γ ≤ 1.

The TW solution results from the equation

(4.2) ut − cuz + γuzz + uzzzz + uuz = 0,

by setting ut = 0 in (4.2). The reduced equation solves to [15, 16]

(4.3) u0(z) = c− 15

19

√
11

19
γ

3
2 tanh(bz)(9− 11tanh2(bz)), z = x− ct,

where k =
√

11γ
76 . The equation (4.3) is a solitary wave solution and it shows a

pulse coupled to a wave front.
By using (4.2), the equation that determines the eigenvalues is given by
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(4.4) R(U) := U ′′′′ + γ U ′′ + (u0U)′ − cU ′ + λU = 0,

where the boundary conditions are U(±∞) = 0 and U ′(±∞) = 0. By using (4.5),
we can verify that when U = u′0, we find that λ = 0.

In the equation (4.4), we remark that u0 − c is free from c so that λ does not
depend explicitly on c.

In (4.4) as each term is a exact derivative, the last two terms are recasted into
on term so that it may be rewritten in the form

(4.5) −c (e−
λz
c U)′ + (U ′′′ + γU ′ + u0U)′e−

λz
c = 0.

In (4.5) by taking into our consideration that zero-eigenfunction solutions could
be constructed by using (4.3). It is worth noticing the validity of this choice will be
verified in the sense mentioned in section2 (after the equation (2.10)). By substi-
tuting into the second equation (2.8), we get an implicit equation for the eigenvalue
λ , namely

(4.6) λ = −2Lim
R→∞

∫ R
−R(U ′′′ + γU ′ + u0U)′Ue−

λz
c dz∫ R

−R(U2e−
λz
c )dz

.

The equation (4.6) is a transcendental equation which undertakes the fact that
the limits in the numerator and the denominator do not exist. By bearing this in
mind we have the following lemma.

Lemma 4.1. The equation (4.6) (or (4.4)) has real eigenvalue solutions. This holds
by using the limits rules.

To construct eigenfunction for (3.4) we start by the particular solution pair
(U = u′0, λ = 0) to (3.4) and generalize the known eigenfunction. To this end we
use the step (i) in the algorithm, that is we write the function u′0 as a series in the
associated Legendre Polynomial, namely

(4.7) U := u′0 = − 33

2527
γ2(25P 2

2 (ξ)− 11P 2
4 (ξ)).

After the step (i) in the algorithm presented in section 2, we find that k = 2.
Thus we have

(4.8) U
(m)
0 = − 33

2527
γ2(25Pm2 (ξ)− 11Pm4 (ξ)), m = 0, 1, 2.

We mention that in the case m = 0, the eigenfunction in (4.8) does not satisfy

the boundary conditions in (4.4). Also when m = 2, we get λ = 0 and U
(2)
0 = U .
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Thus, we consider the case when m = 1 into (4.8) and get

(4.9) U
(1)
0 = − 33

2527
γ2(25P 1

2 (ξ)− 11P 1
4 (ξ)).

To evaluate the eigenvalue that corresponds to eigenfunction U
(1)
0 which is given

in (4.9), we use the step (iii) to calculateλ
(1)
0 . To this end we use (4.6). It worth

noticing that the integrals in (4.6) do not exist, so that it is used in the “weak”
sense as in (2.7) and get a direct result for the eigenvalue as

(4.10) λ
(1)
0 =

98395

2085136
γ2.

From (4.10) we find that λ
(1)
0 > 0. By using (4.10) and (4.9) into (4.4),

by substituting U
(1)
0 for U and λ

(1)
0 for λ. The norm of the relative error in

the eigenfunction, is defined by
∥∥(RE)(1)

∥∥ = Maxn

∥∥∥(RE)
(1)
n

∥∥∥,
∥∥∥(RE)

(1)
n

∥∥∥ =∥∥∥U (1)
n+1 − U

(1)
n

∥∥∥
2
/
∥∥∥U (1)

n

∥∥∥
2

and a similar definition holds for λ. In this case, the

recursion equation in the VIM is

(4.11)
U

(1)
n+1 = U

(1)
n +

∫ z
−∞ η(y)((Ũ

(1)
n )′′′′ + γ(U

(1)
n )′′ + (u0 − c)(̃U (1)

n )′

+λ
(1)
n U

(1)
n + u′0Ũ

(1)
n )dy, n ≥ 0,

where η(y) is the Lagrange multiplier. For simplicity the super script: (1) is dropped
every where.

In (4.11), Ũ
(1)
n is taken with a restricted variation; δŨn = 0. By a direct

calculation, we find that η(y) satisfies the following differential equation

(4.12) γ
d2η

dy2
+ λη = 0, η′(z) =

1

γ
, η(z) = 0.

To calculate λ
(1)
n , n = 1, 2, ...,we use the step (iv) in the algorithm.

When n = 1, we evaluate U
(1)
1 by using (2.8) and (4.11). in this case we have

By calculating U
(1)
1 from (4.11) by using (4.9) and (4.12), it used to calculate λ

(1)
1

(cf. (4.6)) . The results for λ
(1)
i and

∥∥∥(RE)
(1)
i

∥∥∥, i = 1, 2 are displayed against γ and

they are shown in figures 1 and 2 respectively.
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After figure 2, we find that
∥∥∥(RE)

(1)
1

∥∥∥ < ∥∥∥(RE)
(1)
0

∥∥∥ and they are a tolerable

relative errors.
By the remark made in section 2, the associated Legendre expansion in (4.7) is

not unique. A second expansion exists and is given by

(4.13) U (k0) := u′0 = − 11

5054
γ2(5P 4

4 (ξ)− 56P 2
4 (ξ)).

In this case k0 = 4. Thus we have

(4.14) U (m) = − 11

5054
γ2(5P 4

m(ξ)− 56P 2
m(ξ)), m ≥ 4.

When m = 5, we find that

(4.15) λ
(5)
0 =

60808

130321
γ2,

and also λ
(5)
0 > 0. We think in this case there exists an infinite number of eigenval-

ues. They satisfy the inequality λ
(5)
0 < λ

(6)
0 < .... On the other hand we find that

λ = 0 is a simple eigenvalue.
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As λ
(m)
n , n = 0, 1, ... are all positive and from theorem 2.2 it holds that λ

(m)
n

converges to λ(m) > 0, then the TW solution that given by (3.3) is unstable. So
that, we investigate the behavior of the instability if it absolute, convective, diffusive
or ultra-diffusive ones. To this end, the linearized solution of (4.1), which is given
by

(4.16) u(z, t) = cou
′
0 + c1e

λ(1)tU (1)(z) +

∞∑
m=5

cme
λ(m)tU (m)(z),

is displayed in the space (z, t, u). Merely the first few terms are taken at the zero
approximation and the results are shown in figure 3 when γ = 0.2 and γ = 0.5 and
ci = 1 for all i.
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Figure 3. Shows the behavior of the linearized solution of the equation (4.2)
when γ = 0.2 (left) and γ = 0.5 (right).

After figure 3, it holds that the solution undergoes an absolute instability, while
diffusive effects are manifested in narrowing or enlarging the pulse (that coupled to
a wave front).

5. Stability of TWS of the Dispersive K(p, q) Equation

The dispersive K(p, q) equation had been introduced in [22] to generalize the
well-known KdV equation. It reads

(5.1) ut + a (up)x + (uq)xxx = 0, p, q > 1.

In a frame traveling with speed c, this equation becomes:

(5.2) ut − cuz + a (up)z + (uq)zzz = 0.

To get the TWS, we set ut = 0. The obtained equation has a first integral
which is given by
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(5.3) −cut + aup + (uq)′′ = C1, u
′ =

du

dz
,

and C1 is a constant. By taking q = p and by a straightforward calculations, we
get the solution (which was first given in [23]) as

(5.4) u0(z) =

{
( 2cp
a (p+1) )

1
p−1 (cos(z/z0))

2
p−1 , p > 1, |z| < πz0

2 , z0 = 2p
(p−1)

√
a
,

0 , otherwise
.

The solution in (5.4) is known as the compacton solution.
To analyze the stability of (5.4), we linearized the solution of (5.2) near u0(z)

and we get

(5.5) R(U) := −cU ′ + ap (up−10 (z)U)′ + p (up−10 (z)U)′′′ + λU = 0,

where the boundary conditions are U(± pπ
(p−1)

√
a
) = 0, and U ′ is periodic. On the

other hand the eigenvalue problem is solved here in the unit square in the ac-plane,
namely 0 < a < 1, 0 < c < 1.

It is worth noticing that when λ = 0, the eigenfunction U (k) := u′0, which can
be written as

(5.6)

U = −
√
a 2

2
p−1 ( 2

p−1 !)

( 4
p−1 !)p

(
2cp

a (p+ 1)
)

1
p−1P k−1k (ξ), ξ = sin(

(p− 1)
√
a

2p
z), k =

2

p− 1
, p > 1.

It is indeed that after (5.6), the boundary conditions hold when 1 < p ≤ 2. We
remark that, in this case, the associated Legendre expansion of u′0 which is given
by (5.6) is unique.

However a general eigenfunction assumes one of the following forms;

(5.7) U (m1) = −
√
a 2

2
p−1 ( 2

p−1 !)

( 4
p−1 !)p

(
2cp

a (p+ 1)
)

1
p−1Pm1−1

m1
(ξ), m1 = 2, ..., k, k + 1,

or

(5.8) U (m2) = −
√
a 2

2
p−1 ( 2

p−1 !)

( 4
p−1 !)p

(
2cp

a (p+ 1)
)

1
p−1Pm2−1

k (ξ), m2 = 2, ..., k + 1,

or

(5.9) U (m3) = −
√
a 2

2
p−1 ( 2

p−1 !)

( 4
p−1 !)p

(
2cp

a (p+ 1)
)

1
p−1P k−1m3

(ξ), m3 = k − 1, k + 1, ... .
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In a way similar to that done in section 4, the equation (5.5) is rewritten in the
form and u0(z) is given by (5.4). From (5.9) we get an implicit equation for the
eigenvalue λ

(5.10) −c (e−
λz
c U)′ + (ap (up−10 (z)U)′ + p (up−10 (z)U)′′′)e−

λz
c = 0 ,

(5.11) λ = −2

∫ πzo
2

−πzo2
((gU)′′′ + a (gU)′)Ue−

λz
c dz∫ πzo

2

−πzo2
U2e−

λz
c dz

,

where g = p up−10 (z). We mention that the integrals in the RHS of (5.11) exist.

Indeed the equation (5.11) is a transcendental equation in λ which may solve to
real, complex or pure imaginary eigenvalues. A direct result from (5.11) is that if
λ is an eigenvalue then so is −λ, then λ = 0 is an eigenvalue. This could be seen
by rewriting (5.11) in the form

(5.12) λ = 2

∫ πzo
2

0
((gU)′′′ + a (gU)′)U sinh(λzc )dz∫ πzo

2

0
U2 cosh(λzc )dz

.

It is worth noticing that for the aim of the subsequent computations, the equa-
tion ( 5.11) will be rewritten in terms of ξ. We mention that when studying the
stability of TWS, there may exist more than one stability parameter. This arises
from the fact that λ depends on the parameters p, a, and c. So that, we may specify
the “ dominant parameter”, namely a, as to be the stabilization parameter.

First we consider the suggested class of eigenfunctions given by (5.7), they are

denoted by U
(m1)
0 . We evaluate the eigenvalues λ

(m1)
0 by using (5.11), we find that

λ
(m1)
0 = 0 for all m1. This is a direct consequence of the impaired of the integrand

in the upper integral in (5.11). This result means that the eigenvalue λ = 0 is
degenerate and it corresponds to infinite eigenfunction ( as it will be seen later ).

As the suggested eigenfunction is not the formal exact ones, we take m1 = 1
and calculate the error norm. To this end we evaluate the relative error-norm∥∥∥(RE)

(1)
0

∥∥∥ =
∥∥∥U (1)

1 − U (1)
0

∥∥∥
2
/
∥∥∥U (1)

0

∥∥∥
2
, where, for arbitrary p, a, c , explicit equa-

tions may be calculated directly. But they are cumbersome. As the stabilization
parameter was taken a, we fix the values of p = 3

2 , and c = 0.5. In this case k = 4

and m1 = 2, 3, 4, 5 ( cf (5.7) ). Numerical results are carried out for
∥∥∥(RE)

(m)
0

∥∥∥
and the results are shown in Figure 4 when 0 < a < 1 and m1 = 2, 3, 4.

To evaluate U
(m1)
n , n = 1, 2, ..., we use the variational equation, in which m =

m1, or m3,
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(5.13)

U
(m)
n+1 = U

(m)
n +

ξ∫
−1

η(y)( (p−1)2a
4p

((1− y2)(up−1
0 (y)

˜
U

(m)
n (y))′′′ − 3y(up−1

0 (y)
˜
U

(m)
n (y))′′

−(up−1
0 (y)

˜
U

(m)
n (y))′) + a p(up−1

0 (y)
˜
U

(m)
n (y))′

−c (U
(m)
n (y))′ + 2p λ

(m)
n

(p−1)
√
a
√

1−y2
U

(m)
n (y))dy, n ≥ 0.

In (5.13), Ũ
(m)
n (y) is taken with a restricted variation; δŨ

(m)
n (y) = 0, so η(y) is

given by the following differential equation

(5.14) c
dη

dy
+ λη = 0, η(z) =

1

c
.

By evaluating U
(m1)
1 , and then by substituting into (5.11) to get λ

(m)
1 , we find

that λ
(m1)
1 = 0, again, due to the impaired in the upper integral. Now, we evaluate∥∥∥E(m1)

1

∥∥∥
R

, when m1 = 2, 3, 4, 5 and the results are shown in Figure 4.
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After Figure 4, we find that
∥∥∥(RE)

(m1)
1

∥∥∥ < ∥∥∥(RE)
(m1)
0

∥∥∥ for all 0 < a < 1. We

mention that when m1 = 5 = k + 1, then
∥∥∥(RE)

(5)
n

∥∥∥ ≡ 0, for all n. If, in (5.5)

we assume that m1 = k + 2, ..., we have also that λ
(m1)
0 = 0, but computation

of
∥∥∥(RE)

(m1)
0

∥∥∥ shows that it is diverges as m1 → ∞. Thus in the sense of the

convergence theorem for the VIM, these cases were discarded.
From the above results, in this case, the eigenvalue λ = 0 is degenerate
Now we consider the equation (5.8) and evaluate the eigenvalues by using the

equation (5.11), we find that λ
(m2)
0 = 0, λ

(m2)
1 = 0, ..., λ

(m2)
n = 0 for all n. When

p = 3
2 , the norms of the relative error namely

∥∥∥(RE)
(m2)
0

∥∥∥, and
∥∥∥(RE)

(m2)
1

∥∥∥ are

given respectively by the following equations when m2 = 2, 3, 4, 5.
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(5.15)
∥∥∥(RE)

(m2)
0

∥∥∥ = 0.1556a c2, 0.0337a c2, 0, 0.0159a c2,

(5.16)
∥∥∥(RE)

(m2)
1

∥∥∥ = 0.1596a c2, 0.117a c2, 0, 0.005a c2.

When considering the equation (3.9), we find that λ
(m3)
n = 0 for all n and m3,

but in this case
∥∥∥(RE)

(m3)
n

∥∥∥ diverges when n→∞ or m→∞. So that this case is

disregarded.
Now, we investigate the existence of pure imaginary eigenvalues (λ = ±iω) or

real eigenvalues (λ = ±µ).
To this end and by bearing in mind that m1 and m2 take the same values,

we have interesting results between the norms of the relative error in the cases

λ = 0, λ(m) = ±iω(m) and λ = ±µ(m)
0 . If

∥∥∥(RE)
(m1)
n

∥∥∥ , ∥∥∥(RE)
(m2)
n

∥∥∥and
∥∥∥(RE)

(m3)
n

∥∥∥
are the relative errors in the three cases respectively. Then the following lemma
holds

Lemma 5.2. The following relationships hold:
∥∥∥(RE)

(m2)
0

∥∥∥ =
∥∥∥(RE)

(m1)
0

∥∥∥ +

(ω
(m1)
0 )2,

∥∥∥(RE)
(m3)
0

∥∥∥ =
∥∥∥RE)

(m)
0

∥∥∥+ (µ
(m)
0 )2, m = m1 = m2.

The proof is direct as every term is calculated exactly.
As the case when m = m3 was ignored, then only the first relation is significant.

We find that when (ω
(m1)
0 )2 > 1 , then no pure imaginary eigenvalue solutions exist

in the sense of the convergence theorem for the VIM. A necessary condition for

these eigenvalues to hold is that (ω
(m1)
0 )2 <

∥∥∥(RE)
(m1)
1

∥∥∥¡1/2 and the new errors are

still tolerable.
By using the equation (5.15) and from the above arguments, we find that, when

m1 = m2 = 2, 3, 4, 5;

(5.17) (ω
(m1)
0 )2 = 0.15754a c2, 0.1963a c2, 0, 0.2366a c2.

In case of the equation (5.16), and (m2 = 2, 3, 4, 5)we find that; the

(5.18) (ω
(m1)
1 )2 = 0.03823a c2, 0.102 a c2, 0, 0.

By a way similar to that done in the above we could show that complex eigen-
values do not hold.

From these results, only pure imaginary eigenvalues hold for (5.11) (or (5.5)).
Thus compacton solutions are stable.
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6. Conclusions

The stability of traveling wave solutions for evolution equations of order higher
than two had been dealt with by using an extended variational approach which was
matched to the VIM. The solution of the eigenvalue problem and stability analysis
of Kuramoto-Sivashinsky and K(p,q) equations were considered. Inspecting Some
direct results for eigenvalues, against the geometric structure of waves, were done.
This hold for fronts or backs. For the other waves-geometric structures, the criteria
of divergence of the VIM was used to reject the suggested eigenfunctions and the
calculated eigenvalues associated with. In a future work, stability of traveling wave
solutions for vector-evolution equations will be studied.
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