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Stability of LTI Systems with Unstructured Uncertainty Using 
Quadratic Disc Criterion    

 
 

Dong Hae Yeom*, Jin Bae Park** and Young Hoon Joo†   
 

Abstract – This paper deals with robust stability of linear time-invariant (LTI) systems with 
unstructured uncertainties. A new relation between uncertainties and system poles perturbed by the 
uncertainties is derived from a graphical analysis. A stability criterion for LTI systems with 
uncertainties is proposed based on this result. The migration range of the poles in the proposed 
criterion is represented as the bound of uncertainties, the condition number of a system matrix, and the 
disc containing the poles of a given nominal system. Unlike the existing methods depending on the 
solutions of algebraic matrix equations, the proposed criterion provides a simpler way which does not 
involves algebraic matrix equations, and a more flexible root clustering approach by means of 
adjusting the center and the radius of the disc as well as the condition number.  
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1. Introduction 
 

In the case that real systems are approximated to linear 
time-invariant (LTI) systems, it is impossible to describe 
exactly the behavior of the real systems because of 
uncertainties caused by the inaccuracy of modeling, the 
variation of coefficients, and the external disturbance, etc. 
These uncertainties may arouse unexpected behaviors and 
even instability in the control systems. Thus, it is a typical 
method to represent real systems as LTI systems with 
uncertainties and design a robust controller against 
uncertainties. 

The pole placement is one of the most important 
methods to guarantee the robust stability of uncertain 
systems because, roughly speaking, the robustness against 
uncertainties is proportional to the distance between the 
dominant pole and the imaginary axis in the left complex 
half plane. There are many approaches based on the 
locations of system poles and they are divided into two 
categories according to the kinds of uncertainties so called 
structured and unstructured uncertainties. The uncertainties 
in a parametric description of a system are structured. 
Gershigorin circle theorem and Kharitonov theorem are 
well known methods to decide the stability of LTI systems 
with such uncertainties. Gershigorin approach provides the 
approximated bounds of system poles in the form of circles 
whose centers are the diagonal terms of a given system 
matrix and radii are the absolute summation of off-diagonal 

terms of the corresponding row [15]. Kharitanov approach 
provides several characteristic equations whose 
coefficients are the minimum and the maximum values of 
parametric variations and the stability is guaranteed only if 
all characteristic equations are stable [5, 13]. But, these 
methods need the prior knowledge of the variation range in 
parameters. Moreover, the structured uncertainties can not 
describe the uncertainty which is not related to the 
parametric variation such as an error caused by the 
approximation of high order systems [4]. On the other hand, 
the uncertainties affecting a system as a whole are 
unstructured. This kind of uncertainty can be treated as an 
additional system disturbing a nominal system. In practice, 
it is quite common that the uncertainties are given as a 
disturbance system whose elements in a disturbance matrix 
are not known exactly but only the bounds of the matrix 
are known [3]. Under this situation, many researches have 
been devoted to assigning the poles perturbed by the 
disturbance system into a desired region on the complex 
plane, which are known as D-stability or root clustering [1, 
7, 11, 12]. These methods depend on the solutions of 
algebraic matrix equations such as Riccati equation and 
Lyapunov equation. However, several simplifying 
assumptions are required or numerical approaches such as 
linear matrix inequalities (LMI) are used to obtain the 
solution because sometimes it is not easy to solve the given 
algebraic matrix equations explicitly.  

In this paper, we employ the condition number of a 
system matrix to avoid algebraic matrix equations. The 
condition number which is a criterion for the reliability of 
solutions of matrix equations can be used as a measure for 
the approximation of the migration range of system poles 
perturbed by unstructured uncertainties [9]. When the 
condition number of the system matrix is considerably 
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large, the required location of the poles of the nominal 
system tends to be much biased toward the left complex 
half plane because of the overestimation of the migration 
range. In this case, to assign system poles perturbed by 
uncertainties into the desired region, one can not help using 
high feedback gains, which makes the system more 
sensitive to disturbance or noise and may cause the 
saturation in a control input [14]. This is the reason why 
the minimization of the condition number is an important 
issue. However, the explicit relation between the condition 
number and the location of the poles is still an open 
problem [2, 8]. We derive a new relation between 
unstructured uncertainties and the poles perturbed by the 
uncertainties. This relation named quadratic disc criterion 
(QDC) is described by the disc containing the poles of the 
nominal system as well as the bound of uncertainties and 
the condition number of the system matrix. Therefore, the 
criterion gives a chance of the more flexible root clustering 
by means of adjusting the center and the radius of the disc 
unlike the existing methods focusing on the minimization 
of the condition number only. Finally, numerical examples 
show that the proposed QDC can achieve the robust 
stability of LTI system with an arbitrary disturbance system 
whose norm bound is restricted.  

 
 

2. Preliminary 
 
Consider an LTI system with additive uncertainties as 

follows: 
 

 ( ) ( )Δ Δx A A x B B u= + + + , (1) 
 

where 1nx ×∈ R  is a state variable, n nA ×∈ R  and 
1nB ×∈ R  are system and input matrices, respectively, 

Δ n nA ×∈ R  and 1Δ nB ×∈ R  are system and input 
uncertainties, respectively, and u ∈ R  is a control input. 
Assume that the system ( ),A B  is controllable. The 
control input u Fx=  by a state feedback gain 1 nF ×∈ R  
allows (1) to be rewritten as 
 

 
( )
( )

Δ Δ

Δ ,

x A BF A BF x

G G x

= + + +

= +
 

 
where G A BF= +  is a nominal system and 
Δ Δ ΔG A BF= +  is an additional disturbance system. We 
assume that the norm bound of the disturbance system is 
known because it is quite common that the uncertainties 
are given as a disturbance system whose elements in a 
disturbance matrix are not known exactly but only the 
bounds of the matrix are known as follows: 
 
 2

ΔG δ≤  (2) 

In case the nominal system x Gx=  is stable, the whole 
system has some robust stability against uncertainties, 
which is proportional to the distance between the dominant 
pole of the nominal system and the imaginary axis on the 
left complex half plane. At first sight, the system is likely 
to be stable against uncertainties given in (2) if the poles of 
the nominal system are laid on the left of the size of 
uncertainties δ  from the imaginary axis. But, the 
migration range of the poles perturbed by uncertainties is 
not determined by the size of uncertainties only. In fact, the 
range depends not only on the size of uncertainties but also 
on the condition number of a matrix related to the nominal 
system as follows [10]: 

 
 ( )2

Δ inf GG k Q , (3) 
 

where ( )inf ⋅  denotes the infimum, ( )k ⋅  is the condition 
number of the corresponding matrix, and GQ  is a matrix 
consisting of the eigenvectors of the system matrix G . 
This result means that the poles of the uncertain system 
wander around the poles of the nominal system within the 
radius given in (3). The radius depends on the condition 
number more than the size of uncertainties because the 
condition number is much larger than 1 in general, which is 
the reason why the condition number is a critical factor in 
the robustness problem. And the migration range of the 
poles can be treated as an optimization problem through 
minimizing the condition number because the range is 
provided in the form of the infimum of the condition 
number. However, the relation between the condition 
number and the migration range of the system poles is not 
given explicitly, which makes researchers to depend on 
numerical methods in order to obtain a well-conditioned 
solution [11]. 

 
 

3. Quadratic Disc Criterion 
 
In this paper, we derive a new relation between 

unstructured uncertainties and the system poles perturbed 
by the uncertainties. This relation is represented as the disc 
containing the poles of the nominal system, the bound of 
uncertainties, and the condition number of the system 
matrix. Unlike the existing methods focusing on the 
minimization of the condition number, we propose a 
flexible method by means of adjusting the center and the 
radius of the disc as well as the condition number of the 
system. 

When given matrices are simple, that is, the eigenvalues 
of a matrix are distinct, the regions including the 
eigenvalues of the sum of these matrices are well known as 
the following theorem. 

 
Lemma 1 [10]. Let , n nG H ×∈ R . If G  has the distinct 

eigenvalues 1 2, , , nλ λ λ  and ξ  is an eigenvalue of 
G H+ , then ξ  lies in at least one of the discs 
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 ( ){ }2
: inf , 1, 2, ,i Gs s λ H k Q i n− ≤ =  (4) 

 
of the complex s -plane, where ( )inf ⋅  denotes the 
infimum, ( )k ⋅  is the condition number of the matrix, and 

GQ  is any matrix which diagonalizes G  into 1ΛG G GQ Q− .  
  ■ 

 
This result is mentioned already in (3), which means the 

migration ranges of the system poles depend on the size of 
uncertainties and the condition number of the matrix which 
diagonalizes the nominal system when the nominal system 
G  is perturbed by the disturbance system H . In case the 
condition number has a large value, an unrealistic feedback 
gain is required for the migration range in (4) not to violate 
the right complex half plane. The condition number 
required in (4) is its infimum, but it is not easy to find the 
infimum because the condition number changes according 
to the location of poles. 

If the matrix H  is not treated as a disturbance system 
but a special case of the nominal system, a new relation 
between uncertainties and the poles perturbed by the 
uncertainties can be derived. Consider the case when the 
eigenvalues of H  is known. 

 
Lemma 2 [10]. If, in addition to the hypothesis of 

Lemma 1, H  has also the distinct eigenvalues 
1 2, , , nμ μ μ , then ξ  lies in at least one of the discs 
 

 ( ){ }1

1
: inf max , 1, 2, ,i G H jj n

s s λ k Q Q μ i n−

≤ ≤
− ≤ = , 

 
where HQ  diagonalizes H  into 1ΛH H HQ Q− . ■ 

 
If H  is the transpose matrix of G , the above result can 

be easily modified just by replacing HQ  and μ  with GQ  
and λ , respectively. In addition, when the eigenvalues are 
shifted as a constant value, we can obtain the following 
result. 

 
Corollary 1 [16]. If, in addition to the hypothesis of 

Lemma 1 and Lemma 2, H  is the transpose matrix of G , 
then ξ  lies in at least one of the discs  

 

( ) ( ){ }1
: inf max , 1, 2, ,i G G jj n

s s λ α k Q Q λ α i n
≤ ≤

′− − ≤ + =  

 
for any constant α . 

 
Proof. Because ξ  is an eigenvalue of G G ′+ , there is 

a non-zero vector y  such that 
 

 ( )G G αI αI y ξy′+ + − =  
 

for any constant α . Replacing G  with 1ΛG G GQ Q− , the 
equation can be rewritten as 

 ( )1 1Λ ΛG G G G G GQ Q Q Q αI αI y ξy− −⎛ ⎞′ ⎟⎜ ′ ′+ + − =⎟⎜ ⎟⎜ ⎟⎝ ⎠
. 

 
In the left side, by taking GQ  and 1

GQ−  out of the 
parenthesis,  

 

 ( )1 1 1Λ ΛG G G G G G G GQ Q Q Q Q αI αI Q y ξy− − −⎛ ⎞′ ⎟⎜ ′ ′+ + − =⎟⎜ ⎟⎜ ⎟⎝ ⎠
. 

 
Setting 1

GQ y z− =  yields 
 

 ( )1 1Λ ΛG G G G G G G GQ Q Q Q Q αI αI z ξQ z− −⎛ ⎞′ ⎟⎜ ′ ′+ + − =⎟⎜ ⎟⎜ ⎟⎝ ⎠
. 

 
Eliminate GQ  on the both sides, and rearrange the 

equation 
 

 
( ) ( )

( ) ( )

1 1

1 1

Λ Λ

Λ

G G G G G G

G G G G G

ξI αI z Q Q Q Q αI z

Q Q αI Q Q z

− −

− −

⎡ ⎤′⎡ ⎤ ′⎢ ⎥− − = +⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤′ ′⎢ ⎥= +⎢ ⎥⎣ ⎦

. 

 
From this relation, we can obtain the inequality 
 

( )
( )

( )

( )

1 1

1

Λ
min Λ

Λ

max

G
G

G G G G G

G G jj n

ξI αI z
ξI αI

z

Q Q αI Q Q

k Q Q λ α

− −

≤ ≤

⎡ ⎤− −⎣ ⎦ ≤ − −

′ ′≤ +

′= +

. 

 
Thus, ( ) ( )min maxi G G jξ λ α k Q Q λ α′− − ≤ + . Since 

this is true for any possible GQ  which diagonalizes G , 
( ) ( )min inf maxi G G jξ λ α k Q Q λ α′− − ≤ + . This result 

means that the eigenvalues ξ  of G G ′+  lie in the disc 
whose radius is ( )inf maxG G jk Q Q λ α′ +  and its center 

iλ α−  is selected to minimize the distance from ξ . ■ 
 
Lemma 1 and Lemma 2 deal with the disc for each 

eigenvalue and its migration range. On the other hand, we 
can extend the discussion to the disc which includes all 
eigenvalues and their migration ranges by using Corollary 
1. 

 
Theorem 1 [16]. If all eigenvalues of G  lie in the disc 
 

 { }:s s c r− ≤ , 
 

then all eigenvalues of G G ′+  lie in the disc 
 

 ( ){ }: 2 1 inf G Gs s c r k Q Q⎡ ⎤′− ≤ +⎢ ⎥⎣ ⎦ , 
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where ,c r ∈ R . 
 
Proof. Move the disc including all eigenvalues of G  as 
c±  along the real axis, and then one is located at the 

origin and the other is located at 2c  with the same radius 
r . By Corollary 1, the eigenvalues of G G ′+  lie in at 
least one of the discs 

 

( ) ( ){ }1
: inf max , 1, 2, ,i G G jj n

s s λ c k Q Q λ c i n
≤ ≤

′− + ≤ − = . 

 
As shown in Fig. 1, all eigenvalues moved to the right 

lie in the disc at the origin with the radius r , which 
implies max jλ c r− = . Each eigenvalue moved to the 
left lies in at least one of the above discs and the whole 
disc including these individual discs is located at 2c  with 
the radius ( )[1 inf ]G Gr k Q Q′+ . ■ 

 

Re

Im

c 02c

r rr
( )inf G Gk Q Q r′ ×

( )1 inf G Gr k Q Q′⎡ ⎤+⎣ ⎦

 
Fig. 1. Disc containing all eigenvalues 

 
Most of approaches for the stability of uncertain systems 

base on the existence of the solution of an algebraic matrix 
equation such as Riccati equation and Lyapunov equation. 
Sometimes, it is not easy to obtain the explicit solution of a 
given algebraic matrix equation. In this paper, we avoid 
finding the solution of such equations by using the simplest 
energy function which plays the role of the solution of 
Lyapunov equation. The stability of LTI system with norm-
bounded uncertainties can be shown by using the result of 
Theorem 1 as follows: 

 
Theorem 2. If, in addition to the hypothesis of Theorem 

1, the disturbance is bounded as 2|| Δ ||G δ≤  and 
( )2 [1 inf ] 2 0G Gc r k Q Q δ′+ + + < , then the uncertain 

system ( ) ( ) ( )Δx t G G x t= + is stable. 
 
Proof. Set a Lyapunov function for the uncertain system 
( ) ( ) ( )Δx t G G x t= +  as 
 

 V x x′= . 
 
The time derivative of the function is 
 

 ( )Δ ΔV x G G G G x′ ′ ′= + + + . 

 
Let G G X′+ =  and Δ ΔG G Y′+ = . By Wely 

inequality (See Appendix 1), the eigenvalues of the sum of 
symmetric matrices satisfy  

 
 1( ) ( ) ( ), 1i j i jλ X Y λ X λ Y i j n+ − + ≤ + + ≤ + . 

 
In the case of the largest eigenvalue, i.e. 1i j= = , 
 

 ( ) ( ) ( )max max maxλ X Y λ X λ Y+ ≤ + , 
 

which means 
 

 
( )
( ) ( )

max

max max

Δ Δ

Δ Δ

λ G G G G

λ G G λ G G

′ ′+ + +

′ ′≤ + + +
. (5) 

 
By Theorem 1,  
 

 ( ) ( )max 2 1 inf G Gλ G G c r k Q Q⎡ ⎤′ ′+ ≤ + +⎢ ⎥⎣ ⎦ . (6) 
 
And, by Fan-Hoffman inequality (See Appendix 2),  
 

 ( ), 1
2i i

Y Yλ σ Y i n
⎛ ⎞′+ ⎟⎜ ≤ ≤ ≤⎟⎜ ⎟⎜ ⎟⎝ ⎠

, 

 
which can be rewritten as follows in the case of the largest 
value  
 
 ( ) ( )max maxΔ Δ Δ Δλ G G σ G G′ ′+ ≤ + . (7) 

 
Because Euclidean norm 2|| ||⋅  is defined as the largest 

singular value, 
 

 

( )max 2

2 2

2

Δ Δ Δ Δ

Δ Δ

2 Δ

σ G G G G

G G

G

′ ′+ = +

′≤ +

=

. (8) 

 
These inequalities of (5)-(8) mean 
 
( ) ( )max Δ Δ 2 1 inf 2G Gλ G G G G c r k Q Q δ⎡ ⎤′ ′ ′+ + + ≤ + + +⎢ ⎥⎣ ⎦ . 

 
By the assumptions, the time derivative of the Lyapunov 

function is less than 0.  ■ 
 
The migration range of all poles perturbed by 

uncertainties is represented as the size of uncertainties, the 
infimum of the condition number, and the disc including 
the eigenvalues of the nominal system. In the ideal case 
that the condition number is 1, the sufficient condition for 
the stability of the uncertain system in Theorem 2 becomes 

0c r δ+ + < . This implies all poles of the nominal system 
lie on the more left side than the size of uncertainties. 
However, in the actual situation, the condition number is 
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much larger than 1, which makes the migration range 
depend on the condition number more than the size of 
uncertainties. This arouses the optimization problem of 
minimizing the condition number by adjusting the poles of 
the nominal system. In this paper, we focus the stability of 
LTI systems with an arbitrary disturbance system whose 
only norm bound is known by using the disc in Theorem 2 
rather than minimizing the condition number. To do this, 
the approximation of the infimum of the condition number 
replaces the minimization of that. 

 
Fact 1. The values of ( )inf G Gk Q Q′  in the assumption 

of Theorem 2 can be approximated as 
 

 ( ) ( )
( )

min

max

λ G
k G

λ G
. 

 
Proof. The norms of G  and 1G−  can be rewritten as 

follows using the diagonal matrices and the definition of 
the condition number. 

 

 
( )
( )

1 1

1 1 1 1 1 1

Λ Λ Λ ,

Λ Λ Λ .

G G G G G G G G

G G G G G G G G

G Q Q Q Q k Q

G Q Q Q Q k Q

− −

− − − − − −

= ≤ =

= ≤ =
 

 
The multiplication of these inequalities yields 
 

 ( ) ( ) ( )2 ΛG Gk G k Q k≤ . (9) 
 
Meanwhile,  
 

 
( ) ( )

( )

1 1

1 1

G G G G G G

G G G G

k Q Q Q Q Q Q

Q Q Q Q

− −

− −

′ ′ ′=

′ ′=
 (10) 

 
because the equality in XY X Y≤  holds when 
Y X ′= . And  

 

 
( ) ( ) ( )

( )

1 1

2

G G G G G G

G

Q Q Q Q k Q k Q

k Q

− −′ ′ ′=

=
 (11) 

 
because the condition numbers of a matrix and its 
transpose are equivalent to each other. In addition,  
 

 ( ) ( )
( )

( )
( )

max max

min min

Λ
Λ

Λ
G

G
G

λ λ G
k

λ λ G
= =  (12) 

 
because the condition number of a normal matrix, 
Λ Λ Λ ΛG G G G′ ′= , can be represented as the ratio of the 
maximum and the minimum eigenvalue, and the 
eigenvalues of ΛG  and G  are equivalent to each other. 
These relations of (9)-(12) imply 

 ( ) ( ) ( )
( )

max

min
G G

λ G
k G k Q Q

λ G
′≤ . 

 
Multiplying the reciprocal of the ratio of eigenvalues on 

the both sides yields 
 

 ( ) ( )
( ) ( )min

max
G G

λ G
k G k Q Q

λ G
′≤ . 

 
Thus, the infimum of ( )G Gk Q Q′  can be approximated as 
 

 ( ) ( )
( )

min

max

λ G
k G

λ G
. ■ 

 
This result provides an approximation of the infimum of 

the condition number using the nominal system itself, 
which is effective because one does not need to check all 
possible diagonal matrices of the nominal system. 

 
 
 

4. Numerical Example 
 
A common actuator in control systems is the DC motor. 

The electric circuit of the armature and the free body 
diagram of the rotor are shown in Fig. 2. 

 

v

R L

e Kθ= &

T

J

θ

bθ&

+

−

+

−

i

 
Fig. 2. Diagram of DC motor 

 
The motor torque T  is related to the armature current 

i  by a constant factor K . The back electromagnetic force 
e  is related to the rotational velocity θ  and the angular 
position θ  of the shaft. The state representation of DC 
motor is 

 

 
0 1 0 0
0 / / 0
0 / / 1/

θ θ
d θ x b J K J θ v
dt

i K L R L i L

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

, 

 
where J  is the moment of inertia of the rotor, b  is the 
damping ratio of the mechanical system, R  and L  are 
the electric resistance and the electric inductance, 
respectively. Assigning the state [ ]Tx θ θ i= , 3.2J = , 

3.5b= , 2.7K = , 4R= , 1.5L=  and the control input 
u v=  yields 
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0 1 0 0
0 1.0938 0.8438 0
0 1.8000 2.6667 0.6667

x x u
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

 
This system can be stabilized by the conventional pole 

assignment such as { }1, 0.5 0.4 .Gp j= − − ±  The 
resulting nominal system is  

 

 
0 1 0
0 1.0938 0.8438

0.4859 0.4963 0.9062
G

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

. (13) 

 
Suppose there is any uncertainty ΔG  which is 

restricted to 0.5 in Euclidian norm for the system (13). The 
stability check for this case using Theorem 2 and Fact 1 
named QDC yields  

 

 ( ) ( )
( )

min

max

2 1 2 2.3217 0
λ G

c r k G δ
λ G

⎡ ⎤
⎢ ⎥+ + + = >⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Therefore, the stability of this uncertain system is not 

guaranteed. The proposed QDC is a sufficient condition, so 
one can not assert that the uncertain system is unstable just 
because QDC is not satisfied. But, when an arbitrary 
uncertainty GΔ  restricted under 0.5 in its norm bound is 
applied to (13), the poles marked by blue crosses migrate 
as shown in Fig. 3, where red dots are the poles of the 
nominal system. This result supports the stability of the 
uncertain system is not guaranteed. 

 

 
Fig. 3. The location of poles of the uncertain system 

 
To guarantee the stability of the system with the 

uncertainties, one should check QDC with other poles in 
the disc with the center c  and the radius r . In this case, 
the disc center should be moved to the left a litter more and 
the disc radius should be smaller. By some trial and error 
the poles are assigned at { }1.4, 1.3 0.05Gp j= − − ± . 
Then the result of QDC for this case is 

 ( ) ( )
( )

min

max

2 1 2 0.7139 0
λ G

c r k G δ
λ G

⎡ ⎤
⎢ ⎥+ + + =− <⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Therefore, the stability of the system with any 

uncertainties bounded under 0.5 in Euclidean norm is 
guaranteed. In actual, under an arbitrary uncertainty GΔ  
with norm bound as 0.5, the poles marked by blue crosses 
remains in the left half plane as shown in Fig. 4.  

 
 

 
Fig. 4. The location of poles of the uncertain system 

 
 
 

5. Conclusions 
 
In this paper, we proposed a method for LTI systems 

with arbitrary uncertainties to be stabilized by using a new 
stability criterion named QDC. When LTI systems are 
disturbed by uncertainties, the migration range of the poles 
perturbed by uncertainties is proportional to the condition 
number of the system matrix. Thus, the minimization of the 
condition number is one of the main streams of the robust 
stability, which is usually carried out by numerical methods 
because the explicit relation between the condition number 
and the pole location is not clear. In case the system has a 
large condition number, the migration range of the poles 
sometimes has a tendency to be overestimated and a high 
feedback gain is required to guarantee the stability of the 
uncertain system. We have derived a new relation which 
represented the migration range of the poles of the 
uncertain system as the disc containing the poles as well as 
condition number of the nominal system. The proposed 
criterion provides a more flexible choice in root clustering 
by adjusting the center and the radius of the disc, and a 
simpler way which does not require the solution of an 
algebraic matrix equation. 

 
Appendix 1. Wely inequality [6] 
Let , n nX Y ×∈ R  be symmetric matrices, then the 

eigenvalues of the sum of the matrices satisfy 
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1

( ) ( ) ( ), 1

( ) ( ) ( ), 1
i j n i j

i j i j

λ X Y λ X λ Y i j n

λ X Y λ X λ Y i j n
+ −

+ −

+ ≥ + + ≥ +
+ ≤ + + ≤ +

, 

 
where 1 2 nλ λ λ> > >  are the eigenvalues arranged in 
order of size, and , 1, 2, ,i j n= . 
 

Appendix 2. Fan-Hoffman inequality [6] 
For any matrix n nY ×∈ R , the following holds 
 

 ( ), 1
2i i

Y Yλ σ Y i n
⎛ ⎞′+ ⎟⎜ ≤ ≤ ≤⎟⎜ ⎟⎜ ⎟⎝ ⎠

, 

 
where 1 2 nλ λ λ> >  and 1 2 nσ σ σ> >  denote the 
eigenvalues and the singular values arranged in order of 
size, respectively. 
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