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FIXED POINTS AND FUZZY STABILITY OF
QUADRATIC FUNCTIONAL EQUATIONS
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Abstract. Using the fixed point method, we prove the Hyers-
Ulam stability of the following quadratic functional equations
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in fuzzy Banach spaces.

1. Introduction and preliminaries

Katsaras [19] defined a fuzzy norm on a vector space to construct a
fuzzy vector topological structure on the space. Some mathematicians
have defined fuzzy norms on a vector space from various points of view
[12, 21, 41]. In particular, Bag and Samanta [2], following Cheng and
Mordeson [7], gave an idea of fuzzy norm in such a manner that the
corresponding fuzzy metric is of Kramosil and Michalek type [20]. They
established a decomposition theorem of a fuzzy norm into a family of
crisp norms and investigated some properties of fuzzy normed spaces [3].
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We use the definition of fuzzy normed spaces given in [2, 23, 24] to
investigate a fuzzy version of the Hyers-Ulam stability for the above
quadratic functional equations in the fuzzy normed vector space setting.

Definition 1.1. [2, 23, 24, 25] Let X be a real vector space. A
function N : X × R → [0, 1] is called a fuzzy norm on X if for all
x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) =

1;
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy

norms are given in [23].

Definition 1.2. [2, 23, 24, 25] Let (X,N) be a fuzzy normed vector
space. A sequence {xn} in X is said to be convergent or converge if there
exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In
this case, x is called the limit of the sequence {xn} and we denote it by
N -limn→∞ xn = x.

Definition 1.3. [2, 23, 24] Let (X,N) be a fuzzy normed vector
space. A sequence {xn} in X is called Cauchy if for each ε > 0 and
each t > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all p > 0,
we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed
vector space is Cauchy. If each Cauchy sequence is convergent, then the
fuzzy norm is said to be complete and the fuzzy normed vector space is
called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector
spaces X and Y is continuous at a point x0 ∈ X if for each sequence
{xn} converging to x0 in X, then the sequence {f(xn)} converges to
f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is
said to be continuous on X (see [3]).

The stability problem of functional equations was originated from a
question of Ulam [40] concerning the stability of group homomorphisms.
Hyers [15] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for



Fixed points and fuzzy stability of quadratic functional equations 275

additive mappings and by Th.M. Rassias [30] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th.M. Ras-
sias [30] has provided a lot of influence in the development of what we
call Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional
equations. A generalization of the Th.M. Rassias theorem was obtained
by Găvruta [14] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Th.M. Rassias’ approach.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of
the quadratic functional equation is said to be a quadratic function. The
Hyers-Ulam stability of the quadratic functional equation was proved by
Skof [39] for mappings f : X → Y , where X is a normed space and Y
is a Banach space. Cholewa [8] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group.
Czerwik [9] proved the Hyers-Ulam stability of the quadratic functional
equation. The stability problems of several functional equations have
been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [10, 13, 16, 18], [31]–[38]).

Let X be a set. A function d : X ×X → [0,∞] is called a generalized
metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.

Theorem 1.4. [4, 11] Let (X, d) be a complete generalized metric
space and let J : X → X be a strictly contractive mapping with Lips-
chitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |

d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [17] were the first to provide ap-
plications of stability theory of functional equations for the proof of new
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fixed point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been exten-
sively investigated by a number of authors (see [5, 6, 26, 27, 28, 29]).

This paper is organized as follows: In Section 3, we prove the Hyers-
Ulam stability of the quadratic functional equation
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in fuzzy Banach spaces.
Throughout this paper, assume that X is a vector space and that

(Y, N) is a fuzzy Banach space. Let n be a fixed integer greater than 1,
and let v := 2− n− c > 1 and d :=

∑n
i=1 di > 1.

2. Hyers-Ulam stability of the quadratic functional equation
(1.1) in fuzzy Banach spaces

For a given mapping f : X → Y , consider the mapping Pf : Xn → Y ,
defined by
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for all x1, · · · , xn ∈ X.
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Using the fixed point method, we prove the Hyers-Ulam stability of
the quadratic functional equation Pf(x1, · · · , xn) = 0 in fuzzy Banach
spaces.

Theorem 2.1. Let ϕ : Xn → [0,∞) and ψ(x) := ϕ(0, x, 0, · · · , 0︸ ︷︷ ︸
n− 2 times

)

be functions such that there exists an L < 1 with ϕ(x1, · · · , xn) ≤
L
v2 ϕ (vx1, · · · , vxn) for all x1, · · · , xn ∈ X. Let f : X → Y be an even
mapping satisfying f(0) = 0 and

N (Pf(x1, · · · , xn), t) ≥ t

t + ϕ(x1, · · · , xn)
(2.1)

for all x1, · · · , xn ∈ X and all t > 0. Then Q(x) := N -limm→∞ v2mf
(

x
vm

)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (v2 − v2L)t
(v2 − v2L)t + Lψ(x)

(2.2)

for all x ∈ X and all t > 0.

Proof. Letting x1 = x3 = · · · = xn = 0 and x2 = x in (2.1), we get

N
(
f (vx)− v2f(x), t

) ≥ t

t + ϕ(0, x, 0, · · · , 0︸ ︷︷ ︸
n− 2 times

)
=

t

t + ψ(x)
(2.3)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t + ψ(x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete
(see [22, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := v2g
(x

v

)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ψ(x)
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for all x ∈ X and all t > 0. Hence
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(
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=
t
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε.
This means that

d(Jg, Jh) ≤ Ld(g, h)
for all g, h ∈ S.

It follows from (2.3) that

N

(
f (x)− v2f

(x

v

)
,
Lt

v2

)
≥

L
v2 t

L
v2 t + ψ

(
x
v

) ≥ t

t + ψ (x)
(2.4)

for all x ∈ X. So d(f, Jf) ≤ L
v2 .

By Theorem 1.4, there exists a mapping Q : X → Y satisfying the
following:

(1) Q is a fixed point of J , i.e.,

Q
(x

v

)
=

1
v2

Q(x)(2.5)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping.
The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) < ∞}.
This implies that Q is a unique mapping satisfying (2.5) such that there
exists a µ ∈ (0,∞) satisfying

N(f(x)−Q(x), µt) ≥ t

t + ψ(x)

for all x ∈ X;
(2) d(Jmf, Q) → 0 as m →∞. This implies the equality

N - lim
m→∞ v2mf

( x

vm

)
= Q(x)

for all x ∈ X;
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(3) d(f, Q) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ L

v2 − v2L
.

This implies that the inequality (2.2) holds.
By (2.1),

N
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)
, v2mt

)
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t + ϕ
(

x1
vm , · · · , xn
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for all x1, · · · , xn ∈ X, all t > 0 and all m ∈ N. So

N
(
v2mPf

( x1

vm
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)
, t

)
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t
v2m

t
v2m + Lm

v2m ϕ (x1, · · · , xn)

for all x1, · · · , xn ∈ X, all t > 0 and all m ∈ N. Since

lim
m→∞

t
v2m

t
v2m + Lm

v2m ϕ (x1, · · · , xn)
= 1

for all x1, · · · , xn ∈ X and all t > 0,

N (PQ(x1, · · · , xn), t) = 1

for all x1, · · · , xn ∈ X and all t > 0. Thus the mapping Q : X → Y is
quadratic, as desired.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 2.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y be an
even mapping satisfying

N (Pf(x1, · · · , xn), t) ≥ t

t + θ
∑n

j=1 ‖xj‖p
(2.6)

for all x1, · · · , xn ∈ X and all t > 0. Then Q(x) := N -limm→∞ v2mf
(

x
vm

)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (vp − v2)t
(vp − v2)t + θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x1, · · · , xn) := θ
n∑

j=1

‖xj‖p

for all x1, · · · , xn ∈ X. Then we can choose L = v2−p and we get the
desired result.
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Theorem 2.3. Let ϕ : Xn → [0,∞) and ψ(x) := ϕ(0, x, 0, · · · , 0︸ ︷︷ ︸
n− 2 times

)

be functions such that there exists an L < 1 with ϕ(x1, · · · , xn) ≤
v2Lϕ

(
x1
v , · · · , xn

v

)
for all x1, · · · , xn ∈ X. Let f : X → Y be an odd

mapping satisfying (2.1). Then Q(x) := N -limm→∞ 1
v2m f (vmx) exists

for each x ∈ X and defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (v2 − v2L)t
(v2 − v2L)t + ψ(x)

(2.7)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof
of Theorem 2.1.

Consider the linear mapping J : S → S such that

Jg(x) :=
1
v2

g (vx)

for all x ∈ X.
It follows from (2.3) that

N

(
f(x)− 1

v2
f(vx),

t

v2

)
≥ t

t + ψ(x)

for all x ∈ X and all t > 0. Thus d(f, Jf) ≤ 1
v2 .

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with p < 2.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y be
an even mapping satisfying (2.6). Then Q(x) := N -limm→∞ 1

v2m f (vmx)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (v2 − vp)t
(v2 − vp)t + θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x1, · · · , xn) := θ
n∑

j=1

‖xj‖p

for all x1, · · · , xn ∈ X. Then we can choose L = vp−2 and we get the
desired result.



Fixed points and fuzzy stability of quadratic functional equations 281

3. Hyers-Ulam stability of the quadratic functional equation
(1.2) in fuzzy Banach spaces

For a given mapping f : X → Y , we define

Df(x1, · · · , xn) := f (
∑n

i=1 dixi) +
∑

1≤i<j≤n didjf (xi − xj)

−∑n
i=1 di (

∑n
i=1 dif (xi))

for all x1, · · · , xn ∈ X.
Using the fixed point method, we prove the Hyers-Ulam stability of

the quadratic functional equation Df(x1, · · · , xn) = 0 in fuzzy Banach
spaces

Theorem 3.1. Let ϕ : Xn → [0,∞) and ψ(x) := ϕ(x, · · · , x︸ ︷︷ ︸
n times

) be func-

tions such that there exists an L < 1 with ϕ(x1, · · · , xn) ≤ L
d2 ϕ(dx1, · · · ,

dxn) for all x1, · · · , xn ∈ X. Let f : X → Y be an even mapping satis-
fying f(0) = 0 and

N (Df(x1, · · · , xn), t) ≥ t

t + ϕ(x1, · · · , xn)
(3.1)

for all x1, · · · , xn ∈ X and all t > 0. Then Q(x) := N -limm→∞ d2mf
(

x
dm

)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (d2 − d2L)t
(d2 − d2L)t + Lψ(x)

for all x ∈ X and all t > 0.

Proof. Letting x1 = · · · = xl = x in (3.1), we get

N
(
f (dx)− d2f(x), t

) ≥ t

t + ϕ(x, · · · , x︸ ︷︷ ︸
n times

)
=

t

t + ψ(x)
(3.2)

for all x ∈ X.
Consider the set

S := {g : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf{µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t + ψ(x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete
(see [22, Lemma 2.1]).
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Now we consider the linear mapping J : S → S such that

Jg(x) := d2g
(x

d

)

for all x ∈ X.
It follows from (3.2) that

N

(
f (x)− d2f

(x

d

)
,
Lt

d2

)
≥

L
d2 t

L
d2 t + ψ

(
x
d

) ≥ t

t + ψ (x)
(3.3)

for all x ∈ X. So d(f, Jf) ≤ L
d2 .

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 2.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y be an
even mapping satisfying

N (Df(x1, · · · , xn), t) ≥ t

t + θ
∑n

j=1 ‖xj‖p
(3.4)

for all x1, · · · , xn ∈ X and all t > 0. Then Q(x) := N -limm→∞ d2mf
(

x
dm

)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (dp − d2)t
(dp − d2)t + nθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x1, · · · , xn) := θ
n∑

j=1

‖xj‖p

for all x1, · · · , xn ∈ X. Then we can choose L = d2−p and we get the
desired result.

Theorem 3.3. Let ϕ : X l → [0,∞) and ψ(x) := ϕ(x, · · · , x︸ ︷︷ ︸
n times

) be func-

tions such that there exists an L < 1 with ϕ(x1, · · · , xn) ≤ d2Lϕ(x1
d , · · · ,

xn
d ) for all x1, · · · , xn ∈ X. Let f : X → Y be an even mapping satisfy-

ing f(0) = 0 and (3.1). Then Q(x) := N -limm→∞ 1
d2m f (dmx) exists for

each x ∈ X and defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (d2 − d2L)t
(d2 − d2L)t + ψ(x)

for all x ∈ X and all t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof
of Theorem 3.1.

Consider the linear mapping J : S → S such that

Jg(x) :=
1
d2

g (dx)

for all x ∈ X.
It follows from (3.2) that

N

(
f(x)− 1

d2
f(dx),

t

d2

)
≥ t

t + ψ(x)

for all x ∈ X and all t > 0. Thus d(f, Jf) ≤ 1
d2 .

The rest of the proof is similar to the proofs of Theorems 2.1 and
3.1.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with p < 2.
Let X be a normed vector space with norm ‖ · ‖. Let f : X → Y be an
even mapping satisfying

N (Df(x1, · · · , xn), t) ≥ t

t + θ
∑n

j=1 ‖xj‖p
(3.5)

for all x1, · · · , xn ∈ X and all t > 0. Then Q(x) := N -limm→∞ d2mf
(

x
dm

)
exists for each x ∈ X and defines a quadratic mapping Q : X → Y such
that

N (f(x)−Q(x), t) ≥ (d2 − dp)t
(d2 − dp)t + nθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x1, · · · , xn) := θ

n∑

j=1

‖xj‖p

for all x1, · · · , xn ∈ X. Then we can choose L = dp−2 and we get the
desired result.
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[37] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings,
J. Math. Anal. Appl. 173 (1993), 325–338.

[38] Th.M. Rassias and K. Shibata, Variational problem of some quadratic func-
tionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234–253.
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