STABILITY OF TWO GENERALIZED 3-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATIONS

Sun-Sook Jin* and Yang-Hi Lee**

$$
\begin{aligned}
& \text { AbStract. In this paper, we investigate the stability of two func- } \\
& \text { tional equations } \\
& f(a x+b y+c z)-a b f(x+y)-b c f(y+z)-a c f(x+z)+b c f(y) \\
& \quad-a(a-b-c) f(x)-b(b-a) f(-y)-c(c-a-b) f(z)=0 \\
& f(a x+b y+c z)+a b f(x-y)+b c f(y-z)+a c f(x-z) \\
& \quad-a(a+b+c) f(x)-b(a+b+c) f(y)-c(a+b+c) f(z)=0
\end{aligned}
$$

by applying the direct method in the sense of Hyers and Ulam.

1. Introduction

In 1941, Hyers [3] gave an affirmative answer to Ulam's stability problem of the group homomorphisms[9] for additive mappings between Ba nach spaces. Subsequently many mathematicians dealt with this problem (cf. $[1,2,8]$).

A solution of the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(x)-2 f(y)=0 \tag{1.1}
\end{equation*}
$$

is called a quadratic mapping. Now we consider the following functional equations

$$
\begin{align*}
f(a x+b y & +c z)-a b f(x+y)-b c f(y+z)-a c f(x+z)+b c f(y) \\
1.2) & -a(a-b-c) f(x)-b(b-a) f(-y)-c(c-a-b) f(z)=0 \tag{1.2}
\end{align*}
$$

Received October 25, 2017; Accepted November 30, 2017.
2010 Mathematics Subject Classification: Primary 39B82, 39B52.
Key words and phrases: stability, 3-dimensional quadratic functional equation, direct method.

This work was supported by Gongju National University of Education Grant 2017.
Correspondence should be addressed to Yang-Hi Lee, lyhmzi@pro.gjue.ac.kr.
and

$$
\begin{align*}
& f(a x+b y+c z)+a b f(x-y)+b c f(y-z)+a c f(x-z) \\
& (1.3) \quad-a(a+b+c) f(x)-b(a+b+c) f(y)-c(a+b+c) f(z)=0 \tag{1.3}
\end{align*}
$$

for nonzero rational numbers a, b, c. The mapping $f(x)=d x^{2}$ is a solution of these functional equations, where d is a real constant. The authors $[4,5]$ investigated the stability of the equation (1.2) for the cases $a=b=c$ and $a=b=c=\frac{1}{3}$ and they [6] also investigated the stability of the equation (1.3) for the case $c=0$ (see also [7]). Let a, b, c be nonzero rational numbers.

In this paper, we will show that every solution of functional equation (1.2) is a quadratic mapping and every quadratic mapping is a solution of functional equation (1.2) for the case $a \neq b$. In this paper, we will show that every solution of functional equation (1.3) is a quadratic mapping and every quadratic mapping is a solution of functional equation (1.3) for the case $a \neq-b$. Also we will prove the stability of the functional equations (1.2) by using the Hyers' method presented in [3]. Namely, starting from the given mapping f that approximately satisfies the functional equation (1.2), a solution F of the functional equation (1.2) is explicitly constructed by using the formula

$$
F(x):=\lim _{n \rightarrow \infty} \frac{f\left(a^{n} x\right)}{a^{2 n}} \text { or } F(x):=\lim _{n \rightarrow \infty} a^{2 n} f\left(\frac{x}{a^{n}}\right),
$$

which approximates the mapping f.

2. Stability of the functional equation (1.2)

Throughout this paper, let V and W be (real or complex) vector spaces, let X be a (real or complex) normed space, let Y be a Banach space, and let a, b, c be nonzero rational numbers.

For a given mapping $f: V \rightarrow W$ and, we use the following abbreviations

$$
\begin{aligned}
& Q f(x, y):=f(x+y)+f(x-y)-2 f(x)-2 f(y) \\
& D_{a, b} f(x, y):= \\
& \quad f(a x+b y)-a b f(x+y)-\left(a^{2}-a b\right) f(x)-\left(b^{2}-a b\right) f(-y), \\
& D_{a, b, c} f(x, y, z):= \\
& \quad f(a x+b y+c z)-a b f(x+y)-b c f(y+z)-a c f(x+z) \\
& \quad-a(a-b-c) f(x)-b(b-a) f(-y)+b c f(y)-c(c-a-b) f(z),
\end{aligned}
$$

$$
\begin{aligned}
& E_{a, b} f(x, y):= \\
& \quad f(a x+b y)+a b f(x-y)-\left(a^{2}+a b\right) f(x)-\left(b^{2}+a b\right) f(y), \\
& E_{a, b, c} f(x, y, z):= \\
& \quad f(a x+b y+c z)+a b f(x-y)+b c f(y-z)+a c f(x-z) \\
& \quad-a(a+b+c) f(x)-b(a+b+c) f(y)-c(a+b+c) f(z)
\end{aligned}
$$

for all $x, y, z \in V$. As we stated in the previous section, a solution of $Q f=0$ is called a quadratic mapping. Now we will show that f is a quadratic mapping if f is a solution of the functional equation $D_{a, b, c} f(x, y, z)=0$ for all $x, y, z \in V$.

Lemma 2.1. [6] Let a and b be fixed nonzero rational numbers with $a+b \neq 0$. A mapping $f: V \rightarrow W$ is a solution of the functional equation

$$
E_{a, b} f(x, y)=0
$$

(with $f(0)=0$ when $a^{2}+a b+b^{2}=1$) if and only if f is a quadratic mapping.

From the above lemma, we easily obtain the following lemma.
Lemma 2.2. Let a and b be fixed nonzero rational numbers with $a \neq b$. A mapping $f: V \rightarrow W$ is a solution of the functional equation

$$
D_{a, b} f(x, y)=0
$$

(with $f(0)=0$ when $a^{2}-a b+b^{2}=1$) if and only if f is a quadratic mapping.

Since the authors [4] showed the stability of the equation (1.2) for the cases $a=b=c$, we need to prove the stability of the equation (1.2) for the cases $a \neq b$ or $b \neq c$. We can assume that $a \neq b$ without loss of generality from the symmetry of a and c.

Lemma 2.3. Let a, b and c be nonzero rational numbers such that $a \neq b$. A mapping $f: V \rightarrow W$ satisfies the functional equation $D_{a, b, c} f(x, y, z)=0\left(\right.$ with $f(0)=0$ when $\left.a^{2}+b^{2}+c^{2}-a b-b c-a c=1\right)$ if and only if f is a quadratic mapping.

Proof. If $a^{2}+b^{2}+c^{2}-a b-b c-a c \neq 1$, then $\left(1-a^{2}-b^{2}-c^{2}+\right.$ $a b+b c+a c) f(0)=D_{a, b, c} f(0,0,0)=0$ which means that $f(0)=0$. If $f: V \rightarrow W$ is a solution of the functional equation $D_{a, b, c} f(x, y, z)=0$, then the equality $D_{a, b} f(x, y)=D_{a, b, c} f(x, y, 0)=0$ implies that f is a quadratic mapping by Lemma 2.2.

Conversely, let $f: V \rightarrow W$ be a quadratic mapping. Then $f(0)=$ $0, f(x)=f(-x), f(a x)=a^{2} f(x), f(b x)=b^{2} f(x), f(c x)=c^{2} f(x)$, $D_{a, a} f(x, y)=0$, and $D_{b, b} f(x, y)=0$. By Lemma 2.2, we know that f satisfies the functional equations $D_{a, b} f(x, y)=0, D_{a, c} f(x, y)=0$, $D_{b, c} f(x, y)=0$, where a, b, c are arbitrary different rational constants. So we obtain the equality

$$
\begin{aligned}
& D_{a, b, c} f(x, y, z) \\
&= Q f\left(a x+\frac{c z}{2}, b y+\frac{c z}{2}\right)-Q f\left(a x+\frac{c z}{2}, \frac{c z}{2}\right)-Q f\left(b y+\frac{c z}{2}, \frac{c z}{2}\right) \\
&-Q f(a x, b y)+D_{a, b} f(x, y)+D_{a, c} f(x, z)+D_{b, c} f(y, z) \\
&+f(a x)+f(b y)+4 f\left(\frac{c z}{2}\right)-a^{2} f(x)-b^{2} f(y)-c^{2} f(z)=0
\end{aligned}
$$

for all $x, y, z \in V$.
THEOREM 2.4. Let a, b and c be nonzero rational numbers with $a \neq b$ and let $\varphi: V^{3} \rightarrow[0, \infty)$ be a function satisfying one of the following conditions

$$
\begin{align*}
& \sum_{i=0}^{\infty} \frac{\varphi\left(a^{i} x, a^{i} y, a^{i} z\right)}{a^{2 i}}<\infty \tag{2.1}\\
& \sum_{i=0}^{\infty} a^{2 i} \varphi\left(\frac{x}{a^{i}}, \frac{y}{a^{i}}, \frac{z}{a^{i}}\right)<\infty \tag{2.2}
\end{align*}
$$

for all $x, y, z \in V$. If a mapping $f: V \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
\left\|D_{a, b, c} f(x, y, z)\right\| \leq \varphi(x, y, z) \tag{2.3}
\end{equation*}
$$

for all $x, y, z \in V$, then there exists a unique quadratic mapping F : $V \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq\left\{\begin{array}{lc}
\sum_{i=0}^{\infty} \frac{\varphi\left(a^{i} x, 0,0\right)}{a^{2 i+2}} & \text { if } \varphi \text { satisfies }(2.1) \tag{2.4}\\
\sum_{i=0}^{\infty} a^{2 i} \varphi\left(\frac{x}{a^{i+1}}, 0,0\right) & \text { if } \varphi \text { satisfies }(2.2)
\end{array}\right.
$$

for all $x \in V$.

Proof. We will prove the theorem in two cases, either φ satisfies (2.1) or φ satisfies (2.2).

Case 1. Let φ satisfy (2.1). It follows from (2.3) that

$$
\begin{align*}
\left\|\frac{f\left(a^{n} x\right)}{a^{2 n}}-\frac{f\left(a^{n+m} x\right)}{a^{2 n+2 m}}\right\| & =\sum_{i=n}^{n+m-1}\left\|\frac{f\left(a^{i} x\right)}{a^{2 i}}-\frac{f\left(a^{i+1} x\right)}{a^{2 i+2}}\right\| \\
& \leq \sum_{i=n}^{n+m-1}\left\|-D_{a, b, c} f\left(a^{i} x, 0,0\right)\right\| \\
a^{2 i+2} & \tag{2.5}\\
& \leq \sum_{i=n}^{n+m-1} \frac{\varphi\left(a^{i} x, 0,0\right)}{a^{2 i+2}}
\end{align*}
$$

for all $x \in V, n \in \mathbb{N} \cup\{0\}$ and $m \in \mathbb{N}$. So, it is easy to show that the sequence $\left\{\frac{f\left(a^{n} x\right)}{a^{2 n}}\right\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete and $f(0)=0$, the sequence $\left\{\frac{f\left(a^{n} x\right)}{a^{2 n}}\right\}$ converges for all $x \in V$. Hence, we can define a mapping $F: V \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} \frac{f\left(a^{n} x\right)}{a^{2 n}}
$$

for all $x \in V$. Moreover, if we put $n=0$ and let $m \rightarrow \infty$ in (2.5), we obtain the first inequality in (2.4). From the definition of F and (2.3), we get

$$
\begin{aligned}
\left\|D_{a, b, c} F(x, y, z)\right\| & =\lim _{n \rightarrow \infty}\left\|\frac{D_{a, b, c} f\left(a^{n} x, a^{n} y, a^{n} z\right)}{a^{2 n}}\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{\varphi\left(a^{n} x, a^{n} y, a^{n} z\right)}{a^{2 n}}=0
\end{aligned}
$$

i.e., $D_{a, b, c} F(x, y, z)=0$ for all $x, y, z \in V$. By Lemma 2.3, f is a quadratic mapping. To prove the uniqueness, we assume now that there is another quadratic mapping $F^{\prime}: V \rightarrow W$ which satisfies the first inequality in (2.4). Notice that $F^{\prime}(x)=\frac{F^{\prime}\left(a^{n} x\right)}{a^{2 n}}$ for all $x \in V$. Using (2.1) and (2.4), we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|\frac{f\left(a^{n} x\right)}{a^{2 n}}-F^{\prime}(x)\right\| & =\lim _{n \rightarrow \infty}\left\|\frac{f\left(a^{n} x\right)}{a^{2 n}}-\frac{F^{\prime}\left(a^{n} x\right)}{a^{2 n}}\right\| \\
& \leq \lim _{n \rightarrow \infty} \sum_{i=0}^{\infty} \frac{\varphi\left(a^{i+n} x, 0,0\right)}{a^{2 n+2 i+2}} \\
& \leq \lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \frac{\varphi\left(a^{i} x, 0,0\right)}{a^{2 i+2}} \\
& =0
\end{aligned}
$$

for all $x \in V$, i.e, $F^{\prime}(x)=\lim _{n \rightarrow \infty} \frac{f\left(a^{n} x\right)}{a^{2 n}}=F(x)$ for all $x \in V$.
Case 2. Let φ satisfy (2.2). It follows from (2.3) that

$$
\begin{aligned}
& \left\|a^{2 n} f\left(\frac{x}{a^{n}}\right)-a^{2 n+2 m} f\left(\frac{x}{a^{n+m}}\right)\right\| \\
& \\
& =\sum_{i=n}^{n+m-1}\left\|a^{2 i} f\left(\frac{x}{a^{i}}\right)-a^{2 i+2} f\left(\frac{x}{a^{i+1}}\right)\right\| \\
& \\
& \leq \sum_{i=n}^{n+m-1} a^{2 i}\left\|D_{a, b, c} f\left(\frac{x}{a^{i+1}}, 0,0\right)\right\| \\
&
\end{aligned}
$$

for all $x \in V, n \in \mathbb{N} \cup\{0\}$ and $m \in \mathbb{N}$. So, it is easy to show that the sequence $\left\{a^{2 n} f\left(\frac{x}{a^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete and $f(0)=0$, the sequence $\left\{a^{2 n} f\left(\frac{x}{a^{n}}\right)\right\}$ converges for all $x \in V$. Hence, we can define a mapping $F: V \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} a^{2 n} f\left(\frac{x}{a^{n}}\right)
$$

for all $x \in V$. Moreover, if we put $n=0$ and let $m \rightarrow \infty$ in (2.6), we obtain the second inequality in (2.4). From the definition of F and (2.3), we get

$$
\begin{aligned}
\left\|D_{a, b, c} F(x, y, z)\right\| & =\lim _{n \rightarrow \infty}\left\|a^{2 n} D_{a, b, c} f\left(\frac{x}{a^{n}}, \frac{y}{a^{n}}, \frac{z}{a^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} a^{2 n} \varphi\left(\frac{x}{a^{n}}, \frac{y}{a^{n}}, \frac{z}{a^{n}}\right) \\
& =0
\end{aligned}
$$

for all $x, y, z \in V$ i.e., $D_{a, b, c} F(x, y, z)=0$ for all $x, y, z \in V$. By Lemma $2.3, f$ is a quadratic mapping. To prove the uniqueness, we assume now that there is another mapping $F^{\prime}: V \rightarrow W$ which satisfies the second inequality in (2.4). Notice that $F^{\prime}(x)=a^{2 n} F^{\prime}\left(\frac{x}{a^{n}}\right)$ for all $x \in V$. Using Lemma 2.1, (2.2), and (2.4), we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \| a^{2 n} f\left(\frac{x}{a^{n}}\right) & -F^{\prime}(x) \| \\
& =\lim _{n \rightarrow \infty}\left\|a^{2 n} f\left(\frac{x}{a^{n}}\right)-a^{2 n} F^{\prime}\left(\frac{x}{a^{n}}\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \lim _{n \rightarrow \infty} \sum_{i=0}^{\infty} a^{2 n+2 i} \varphi\left(\frac{x}{a^{n+i}}, 0,0\right) \\
& \leq \lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} a^{2 i} \varphi\left(\frac{x}{a^{i}}, 0,0\right) \\
& =0
\end{aligned}
$$

for all $x \in V$, i.e., $F^{\prime}(x)=\lim _{n \rightarrow \infty} a^{2 n} f\left(\frac{x}{a^{n}}\right)=F(x)$ for all $x \in V$.
We easily obtain the following theorems by using the similar method used in Theorem 2.4.

THEOREM 2.5. Let a, b and c be nonzero rational numbers with $a \neq b$ and let $\varphi: V^{3} \rightarrow[0, \infty)$ be a function satisfying one of the following conditions

$$
\begin{align*}
& \sum_{i=0}^{\infty} \frac{\varphi\left(c^{i} x, c^{i} y, c^{i} z\right)}{c^{2 i}}<\infty \tag{2.7}\\
& \sum_{i=0}^{\infty} c^{2 i} \varphi\left(\frac{x}{c^{i}}, \frac{y}{c^{i}}, \frac{z}{c^{i}}\right)<\infty \tag{2.8}
\end{align*}
$$

for all $x, y, z \in V$. If a mapping $f: V \rightarrow Y$ satisfies (2.3) for all $x, y, z \in V$ with $f(0)=0$, then there exists a unique quadratic mapping $F: V \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq \begin{cases}\sum_{i=0}^{\infty} \frac{1}{c^{2 i+2}} \varphi\left(0,0, c^{i} x\right) & \text { if } \varphi \text { satisfites }(2.7) \\ \sum_{i=0}^{\infty} c^{2 i} \varphi\left(0,0, \frac{x}{c^{i+1}}\right) & \text { if } \varphi \text { satisfites }(2.8)\end{cases}
$$

for all $x \in V$.
Corollary 2.6. Suppose that a, b, c are given as in Theorem 2.4 and p, θ are positive real constants with $p \neq 2$. If a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|D_{a, b, c} f(x, y, z)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $x, y, z \in X$, then there exists a unique quadratic mapping F : $X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \min \left\{\frac{\theta\|x\|^{p}}{\left|a^{2}-|a|^{p}\right|}, \frac{\theta\|x\|^{p}}{\left|c^{2}-|c|^{p}\right|}\right\} \tag{2.9}
\end{equation*}
$$

for all $x \in X$.

Proof. First, consider the case $|a|,|c|>1$. If we put $\varphi(x, y, z):=$ $\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in X$, then φ satisfies (2.1) and (2.7) when $0<p<2$ and φ satisfies (2.2) and (2.8) when $p>2$. Therefore by Theorems 2.4 and 2.5 , we obtain the desired inequality (2.9). For the other cases, we can get easily the inequality (2.9) by the similar method.

3. Stability of the functional equation (1.3)

In this section, we will show that f is a quadratic mapping if f is a solution of the functional equation $E_{a, b, c} f(x, y, z)=0$ for all $x, y, z \in V$.

Lemma 3.1. Let a, b and c be nonzero rational numbers. A mapping $f: V \rightarrow W$ satisfies the functional equation $E_{a, b, c} f(x, y, z)=0$ (with $f(0)=0$ when $a^{2}+b^{2}+c^{2}+a b+b c+a c=1$) if and only if f is a quadratic mapping.

Proof. If $a^{2}+b^{2}+c^{2}+a b+b c+a c \neq 1$, then $\left(1-a^{2}-b^{2}-c^{2}-a b-b c-\right.$ ac) $f(0)=E_{a, b, c} f(0,0,0)=0$ which means that $f(0)=0$. If $f: V \rightarrow W$ is a solution of the functional equation $E_{a, b, c} f(x, y, z)=0$ with $a+b \neq 0$, then the equality $E_{a, b} f(x, y)=E_{a, b, c} f(x, y, 0)=0$ implies that f is a quadratic mapping by Lemma 2.1. If $f: V \rightarrow W$ is a solution of the functional equation $E_{a, b, c} f(x, y, z)=0$ with $a+b=0$, then the equality $a c(f(x)-f(-x))=E_{a, b, c} f(0,-x, 0)-E_{a, b, c} f(x, 0,0)=0$ implies that $f(x)=f(-x)$ for all $x \in V$. Since a, b, c are nonzero rational numbers and $a+b=0$, we know that $a+c \neq 0$ or $b+c \neq 0$. Without of generality, assume that $a+c \neq 0$, then the equality $E_{a, c} f(x, y)=E_{a, b, c} f(x, 0, y)=0$ implies that f is a quadratic mapping by Lemma 2.1.

Conversely, let $f: V \rightarrow W$ be a quadratic mapping. Then $f(0)=$ $0, f(x)=f(-x), f(a x)=a^{2} f(x), f(b x)=b^{2} f(x), f(c x)=c^{2} f(x)$, $E_{a,-a} f(x, y)=0, E_{b,-b} f(x, y)=0$, and $E_{c,-c} f(x, y)=0$. By Lemma 2.1, we know that f satisfies the functional equations $E_{a, b} f(x, y)=$ $0, E_{a, c} f(x, y)=0, E_{b, c} f(x, y)=0$, where a, b, c are arbitrary rational constants. So we obtain the equality

$$
\begin{aligned}
E_{a, b, c} f(x, y, z)= & Q f\left(a x+\frac{c z}{2}, b y+\frac{c z}{2}\right)-Q f\left(a x+\frac{c z}{2}, \frac{c z}{2}\right) \\
& -Q f\left(b y+\frac{c z}{2}, \frac{c z}{2}\right)-Q f(a x, b y)+E_{a, b} f(x, y) \\
& +E_{a, c} f(x, z)+E_{b, c} f(y, z)=0
\end{aligned}
$$

for all $x, y, z \in V$.

We will prove the stability of the functional equation (1.3) for the case $a+b+c \neq 0$ in the following theorem.

THEOREM 3.2. Let a, b and c be nonzero rational numbers with $a+$ $b+c \neq 0$ and let $\varphi: V^{3} \rightarrow[0, \infty)$ be a function satisfying one of the following conditions

$$
\begin{align*}
& \sum_{i=0}^{\infty} \frac{\varphi\left(k^{i} x, k^{i} y, k^{i} z\right)}{k^{2 i}}<\infty \tag{3.1}\\
& \sum_{i=0}^{\infty} k^{2 i} \varphi\left(\frac{x}{k^{i}}, \frac{y}{k^{i}}, \frac{z}{k^{i}}\right)<\infty \tag{3.2}
\end{align*}
$$

for all $x, y, z \in V$, where $k:=a+b+c$. If a mapping $f: V \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
\left\|E_{a, b, c} f(x, y, z)\right\| \leq \varphi(x, y, z) \tag{3.3}
\end{equation*}
$$

for all $x, y, z \in V$, then there exists a unique quadratic mapping F : $V \rightarrow Y$ such that
$\|f(x)-F(x)\| \leq \begin{cases}\sum_{i=0}^{\infty} \frac{\varphi\left(k^{i} x, k^{i} x, k^{i} x\right)}{k^{2 i+2}} & \text { if } \varphi \text { satisfites }(3.1), \\ \sum_{i=0}^{\infty} k^{2 i} \varphi\left(\frac{x}{k^{i+1}}, \frac{x}{k^{i+1}}, \frac{x}{k^{i+1}}\right) & \text { if } \varphi \text { satisfites }(3.2)\end{cases}$
for all $x \in V$.
Proof. We will prove the theorem in two cases, either φ satisfies (3.1) or φ satisfies (3.2).

Case 1. Let φ satisfy (3.1). It follows from (3.3) that

$$
\begin{aligned}
\left\|\frac{f\left(k^{n} x\right)}{k^{2 n}}-\frac{f\left(k^{n+m} x\right)}{k^{2 n+2 m}}\right\| & =\sum_{i=n}^{n+m-1}\left\|\frac{f\left(k^{i} x\right)}{k^{2 i}}-\frac{f\left(k^{i+1} x\right)}{k^{2 i+2}}\right\| \\
& \leq \sum_{i=n}^{n+m-1} \frac{\left\|-E_{a, b, c} f\left(k^{i} x, k^{i} x, k^{i} x\right)\right\|}{k^{2 i+2}} \\
& \leq \sum_{i=n}^{n+m-1} \frac{\varphi\left(k^{i} x, k^{i} x, k^{i} x\right)}{k^{2 i+2}}
\end{aligned}
$$

for all $x \in V$. So, it is easy to show that the sequence $\left\{\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete and $f(0)=0$, the sequence $\left\{\frac{f\left(k^{n} x\right)}{k^{2 n}}\right\}$ converges for all $x \in V$. Hence, we can define a
mapping $F: V \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{2 n}}
$$

for all $x \in V$. Moreover, if we put $n=0$ and let $m \rightarrow \infty$ in (3.5), we obtain the first inequality in (3.4). From the definition of F and (3.3), we get

$$
\begin{aligned}
\left\|E_{a, b, c} F(x, y, z)\right\| & =\lim _{n \rightarrow \infty}\left\|\frac{E_{a, b, c} f\left(k^{n} x, k^{n} y, k^{n} z\right)}{k^{2 n}}\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{\varphi\left(k^{n} x, k^{n} y, k^{n} z\right)}{k^{2 n}}=0
\end{aligned}
$$

for all $x, y, z \in V$ i.e., $E_{a, b, c} F(x, y, z)=0$ for all $x, y, z \in V$. By Lemma $3.1, F$ is a quadratic mapping. To prove the uniqueness, we assume now that there is another quadratic mapping $F^{\prime}: V \rightarrow W$ which satisfies the first inequality in (3.4). Notice that $F^{\prime}(x)=\frac{F^{\prime}\left(k^{n} x\right)}{k^{2 n}}$ for all $x \in V$. Using (3.1) and (3.4), we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|\frac{f\left(k^{n} x\right)}{k^{2 n}}-F^{\prime}(x)\right\| & =\lim _{n \rightarrow \infty}\left\|\frac{f\left(k^{n} x\right)}{k^{2 n}}-\frac{F^{\prime}\left(k^{n} x\right)}{k^{2 n}}\right\| \\
& \leq \sum_{i=0}^{\infty} \frac{\varphi\left(k^{i+n} x, k^{i+n} x, k^{i+n} x\right)}{k^{2 n+2 i+2}} \\
& \leq \sum_{i=n}^{\infty} \frac{\varphi\left(k^{i} x, k^{i} x, k^{i} x\right)}{k^{2 i+2}} \\
& =0
\end{aligned}
$$

for all $x \in V$, i.e, $F^{\prime}(x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{2 n}}=F(x)$ for all $x \in V$.
Case 2. Let φ satisfy (3.2). It follows from (3.3) that

$$
\begin{aligned}
\| k^{2 n} f\left(\frac{x}{k^{n}}\right)-k^{2 n+2 m} f(& \left.\frac{x}{k^{n+m}}\right) \| \\
& =\sum_{i=n}^{n+m-1}\left\|k^{2 i} f\left(\frac{x}{k^{i}}\right)-k^{2 i+2} f\left(\frac{x}{k^{i+1}}\right)\right\| \\
& \leq \sum_{i=n}^{n+m-1} k^{2 i}\left\|E_{a, b, c} f\left(\frac{x}{k^{i+1}}, \frac{x}{k^{i+1}}, \frac{x}{k^{i+1}}\right)\right\| \\
6) \quad & \leq \sum_{i=n}^{n+m-1} k^{2 i} \varphi\left(\frac{x}{k^{i+1}}, \frac{x}{k^{i+1}}, \frac{x}{k^{i+1}}\right)
\end{aligned}
$$

for all $x \in V$. So, it is easy to show that the sequence $\left\{k^{2 n} f\left(\frac{x}{k^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete and $f(0)=0$, the sequence $\left\{k^{2 n} f\left(\frac{x}{k^{n}}\right)\right\}$ converges for all $x \in V$. Hence, we can define a mapping $F: V \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} k^{2 n} f\left(\frac{x}{k^{n}}\right)
$$

for all $x \in V$. Moreover, if we put $n=0$ and let $m \rightarrow \infty$ in (3.6), we obtain the second inequality in (3.4). From the definition of F and (3.3), we get

$$
\begin{aligned}
\left\|E_{a, b, c} F(x, y, z)\right\| & =\lim _{n \rightarrow \infty}\left\|k^{2 n} E_{a, b, c} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}, \frac{z}{k^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} k^{2 n} \varphi\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}, \frac{z}{k^{n}}\right) \\
& =0
\end{aligned}
$$

for all $x, y, z \in V$ i.e., $D F(x, y, z)=0$ for all $x, y, z \in V$. By Lemma 3.1, f is a quadratic mapping. To prove the uniqueness, we assume now that there is another mapping $F^{\prime}: V \rightarrow W$ which satisfies the second inequality in (3.4). Notice that $F^{\prime}(x)=k^{2 n} F^{\prime}\left(\frac{x}{k^{n}}\right)$ for all $x \in V$. Using (3.2) and (3.4), we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|k^{2 n} f\left(\frac{x}{k^{n}}\right)-F^{\prime}(x)\right\| & =\lim _{n \rightarrow \infty}\left\|k^{2 n} f\left(\frac{x}{k^{n}}\right)-k^{2 n} F^{\prime}\left(\frac{x}{k^{n}}\right)\right\| \\
& \leq \sum_{i=0}^{\infty} k^{2 n+2 i} \varphi\left(\frac{x}{k^{n+i}}, \frac{x}{k^{n+i}}, \frac{x}{k^{n+i}}\right) \\
& \leq \sum_{i=n}^{\infty} k^{2 i} \varphi\left(\frac{x}{k^{i}}, \frac{x}{k^{i}}, \frac{x}{k^{i}}\right) \\
& =0
\end{aligned}
$$

for all $x \in V$, i.e, $F^{\prime}(x)=\lim _{n \rightarrow \infty} k^{2 n} f\left(\frac{x}{k^{n}}\right)=F(x)$ for all $x \in V$.
The following corollary follows Theorem 3.2.
Corollary 3.3. Suppose that a, b, c are given as in Theorem 3.2 with $|a+b+c| \neq 1$, and p, θ are positive real constants with $p \neq 2$. If a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\left\|E_{a, b, c} f(x, y, z)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $x, y, z \in X$, then there exists a unique quadratic mapping F : $X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{3 \theta\|x\|^{p}}{\left|k^{2}-|k|^{p}\right|} \tag{3.7}
\end{equation*}
$$

for all $x \in X$, where $k:=a+b+c$.
Proof. First, consider the case $|a+b+c|>1$. If we put $\varphi(x, y, z):=$ $\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in X$, then φ satisfies (3.1) when $0<p<2$ and φ satisfies (3.2) when $p>2$. Therefore by Theorems 3.2, we obtain the desired inequality (3.7). For the case $|a+b+c|<1$, we can easily the inequality (3.7) by the similar method.

Now, we will prove the stability of the functional equation (1.3) for the case $a+b+c=0$ in the following two theorems.

Theorem 3.4. Let a, b and c be nonzero rational numbers with $a+$ $b+c=0$ and let $\varphi: V^{3} \rightarrow[0, \infty)$ be a function satisfying one of the following conditions

$$
\begin{align*}
& \sum_{i=0}^{\infty} \frac{\varphi\left((-c)^{i} x,(-c)^{i} y, 0\right)}{c^{2 i}}<\infty \tag{3.8}\\
& \sum_{i=0}^{\infty} c^{2 i} \varphi\left(\frac{x}{(-c)^{i}}, \frac{y}{(-c)^{i}}, 0\right)<\infty \tag{3.9}
\end{align*}
$$

for all $x, y \in V$. If a mapping $f: V \rightarrow Y$ satisfies the inequality (3.3) for all $x, y, z \in V$ with $f(0)=0$, then there exists a unique quadratic mapping $F: V \rightarrow Y$ such that
$\|f(x)-F(x)\| \leq \begin{cases}\sum_{i=0}^{\infty} \frac{\varphi\left((-c)^{i} x,(-c)^{i} x, 0\right)}{c^{2 i+2}} & \text { if } \varphi \text { satisfites (3.8), } \\ \sum_{i=0}^{\infty} c^{2 i} \varphi\left(\frac{x}{(-c)^{i+1}}, \frac{x}{(-c)^{i+1}}, 0\right) & \text { if } \varphi \text { satisfites (3.9) }\end{cases}$
for all $x \in V$.
Proof. Since $E_{a, b} f(x, y)=E_{a, b, c} f(x, y, 0)$ for all $x, y \in V$, we get the inequality

$$
\begin{equation*}
\left\|E_{a, b} f(x, y)\right\| \leq \varphi(x, y, 0) \tag{3.11}
\end{equation*}
$$

for all $x, y \in V$. Hence we obtain the unique quadratic mapping F : $V \rightarrow Y$ satisfying the inequality (3.11) from Theorem 2.10 in [6].

Similarly the following theorem follows from Theorem 2.4 in [6].

THEOREM 3.5. Let a, b and c be nonzero rational numbers with $a+$ $b+c=0$ and let $\varphi: V^{3} \rightarrow[0, \infty)$ be a function satisfying one of the following conditions

$$
\begin{align*}
& \sum_{i=0}^{\infty} \frac{\varphi\left(a^{i} x, a^{i} y, 0\right)}{a^{2 i}}<\infty \tag{3.12}\\
& \sum_{i=0}^{\infty} a^{2 i} \varphi\left(\frac{x}{a^{i}}, \frac{y}{a^{i}}, 0\right)<\infty \tag{3.13}
\end{align*}
$$

for all $x, y \in V$. If a mapping $f: V \rightarrow Y$ satisfies the inequality (3.3) for all $x, y, z \in V$ with $f(0)=0$, then there exists a unique quadratic mapping $F: V \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq\left\{\begin{array}{lr}
\sum_{i=0}^{\infty} \frac{\varphi\left(a^{i} x, 0,0\right)}{a^{2 i+2}} & \text { if } \varphi \text { satisfites }(3.12) \\
\sum_{i=0}^{\infty} a^{2 i} \varphi\left(\frac{x}{a^{i+1}}, 0,0\right) & \text { if } \varphi \text { satisfites }(3.13)
\end{array}\right.
$$

for all $x \in V$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[2] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224.
[4] S.-S. Jin and Y.-H. Lee, Generalized Hyers-Ulam stability of a 3 dimenional quadratic functional equation, Int. J. Math. Anal. (Ruse), 10 (2016), 719-728.
[5] S.-S. Jin and Y.-H. Lee, Generalized Hyers-Ulam stability of a 3 dimenional quadratic functional equation in modular spaces, Int. J. Math. Anal. (Ruse), 10 (2016), 953-963.
[6] S.-S. Jin and Y.-H. Lee, Stability of a functional equation related to quadratic mappings, Int. J. Math. Anal. (Ruse), 11 (2017), 55-68.
[7] H.-M. Kim and J.-R. Lee, Approximate Euler-Lagrange Quadratic Map- pings in Fuzzy Banach Spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 869274, 1-9.
[8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[9] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
*
Department of Mathematics Education Gongju National University of Education
Gongju 32553, Republic of Korea
E-mail: ssjin@gjue.ac.kr
**
Department of Mathematics Education Gongju National University of Education
Gongju 32553, Republic of Korea
E-mail: lyhmzi@pro.gjue.ac.kr

