DOI QR코드

DOI QR Code

On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations

  • Abdel-Gawad, Hamdy I. (Department of Mathematics, Faculty of Science, Cairo University) ;
  • Osman, M.S. (Department of Mathematics, Faculty of Science, Cairo University)
  • Received : 2012.04.04
  • Accepted : 2012.08.30
  • Published : 2013.12.23

Abstract

The eigenvalue problems arise in the analysis of stability of traveling waves or rest state solutions are currently dealt with, using the Evans function method. In the literature, it had been shown that, use of this method is not straightforward even in very simple examples. Here an extended "variational" method to solve the eigenvalue problem for the higher order dierential equations is suggested. The extended method is matched to the well known variational iteration method. The criteria for validity of the eigenfunctions and eigenvalues obtained is presented. Attention is focused to find eigenvalue and eigenfunction solutions of the Kuramoto-Slivashinsky and (K[p,q]) equation.

Keywords

References

  1. Murray, J., Mathematical Biology, Second Edition. Springer, Berlin, 1993.
  2. Kapral, R. and Showalter, K. (Eds), Chemical waves and Patterns, Kluwer, Doordrecht (1995).
  3. Volpert, A. I. and Volpert, V. A., Traveling waves solutions of parabolic systems, Transl. Math. Mono. Amer Math. Soc. Providence 140(1994).
  4. Field, R. J. and Burger, M., Oscillations and Traveling waves in Chemical Systems, J. Wiley, New York (1985).
  5. Evans, J. Nerve axon equations (iii). Stability of the never impulse., Indiana Univ. Math. J. 22(1972), 577-593.
  6. Evans, J. Nerve axon equations (iv). The stable and the unstable impulse., Indiana Univ. Math. J. 24(1975), 1169-1190.
  7. Gardner, R. A. and Jones C. K. R. T. Traveling waves of perturbed diffusion equation arising in a phase field model., India Univ. Math. J. 39(1990), 1197-1222. https://doi.org/10.1512/iumj.1990.39.39054
  8. Pego, R. and Weinstein, M. Eigenvalues and instability of solitary waves., Phil. Trans. R. Soc. Lond. A, 340(1992), 47-94. https://doi.org/10.1098/rsta.1992.0055
  9. Nii, S. Stability of traveling multiple-front (multiple-back) wave solution of the Fitzhugh-Nagumo equations., SIAM. J. Math. Anal. 28(1997), 1094-1112. https://doi.org/10.1137/S003614109528829X
  10. Afendikov, A. L. and Bridges, J. J. Instability of the Hocking-Stewartson pulse and its implications for three-dimensional, Proc. R. Soc. Lond. A. 457(2001), 257-272.
  11. Reddy, S. C. and Trefethen, L. N., Pseudo spectra of the convection diffusion operators., SIAM. Appl. Math. 54(1994), 1634-1649. https://doi.org/10.1137/S0036139993246982
  12. Alexander, J. C., Gardner, R. A. and Jones, C. K. R. T. A topological invariant arising in the stability analysis of traveling waves., J. Reine. Angew. Math. 410(1990), 167-212.
  13. Nii, S. A topological proof of stability of N-front solutions of the Fitzhugh-Nagumo equations., J. Dynam. Diff. Eqns. 11(1999), 515-555. https://doi.org/10.1023/A:1021965920761
  14. G. I. Sivashinsky, Acta. 4(1977), 1177.
  15. Y. Kuramoto and Tsuzuki. Theor. Phys. 55(1976), 356-369. https://doi.org/10.1143/PTP.55.356
  16. Y. Kuramoto and T. Yamada, Prog. Theo. Phys. 64 (1978), 346-367. https://doi.org/10.1143/PTPS.64.346
  17. Luwai Wazzan, A modified Tanh-Coth method for Solving the general Burgers-Fisher and The Kuramoto-Sivashinsky equations. Communications in Non Linear Science and Numerical Simulation, 14(2009), 2646-2652.
  18. John Weiss, M.Tobar and G. Carnevale, The Painleve' for Partial Differential Equations, J. Math. Phy. 24(1983), 552.
  19. Gui-qoing Xu, Zhi-bin Li, PDEP test: a package for the Painleve' test of nonlinear partial differential equations. Applied Mathematics and Computation, 169(2005), 1364-1379. https://doi.org/10.1016/j.amc.2004.10.055
  20. K. K. Victor, B. B. Thomas and T. C. Kofane, On the exact solution of the Schafer-Wayne short pulse equation: WKI eigenvalue problem. J. Phys. A, 39(2007), 5585.
  21. H. Sagan; Boundary and eigenvalue problems in mathematical physics, J. Wiley, (1989).
  22. P. Rosenau and J. M. Hyman, Phys. Rev. Lett. 70 (1993), 564. https://doi.org/10.1103/PhysRevLett.70.564
  23. P. Rosenau, Physica D, 123(1998), 525. https://doi.org/10.1016/S0167-2789(98)00148-1
  24. M. Tatari and M. Dehghan, On the convergence of He's variational iteration method, J. comp. Appl. Math., 207 (2007), 121-128. https://doi.org/10.1016/j.cam.2006.07.017
  25. He, J. H. Variational iteration method. Applied Mathematics and Computation., 114(1999), 699-708.
  26. W.H.Enright, Verifying approximate solutions to di erential equations, Comput. Appl. Math.,185(2006), 203-211. https://doi.org/10.1016/j.cam.2005.03.006

Cited by

  1. Dynamic of DNA's possible impact on its damage vol.39, pp.2, 2016, https://doi.org/10.1002/mma.3466
  2. Analysis of the generalized (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients in an inhomogeneous medium vol.31, pp.22, 2017, https://doi.org/10.1142/S0217984917501354
  3. On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through ($$G'/G^{2}$$G′/G2)-expansion method and the modified Kudryashov method pp.2281-7875, 2018, https://doi.org/10.1007/s40324-018-0152-6
  4. On nonautonomous complex wave solutions described by the coupled Schrödinger–Boussinesq equation with variable-coefficients vol.50, pp.2, 2018, https://doi.org/10.1007/s11082-018-1346-y
  5. Application of hat basis functions for solving two-dimensional stochastic fractional integral equations vol.37, pp.4, 2018, https://doi.org/10.1007/s40314-018-0608-4
  6. New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity vol.134, pp.1, 2019, https://doi.org/10.1140/epjp/i2019-12442-4