• Title/Summary/Keyword: stability equations

Search Result 1,345, Processing Time 0.032 seconds

OSCILATION AND STABILITY OF NONLINEAR NEUTRAL IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

  • Duan, Yongrui;Tian, Peng;Zhang, Shunian
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.243-253
    • /
    • 2003
  • In this paper, oscillation and stability of nonlinear neutral impulsive delay differential equation are studied. The main result of this paper is that oscillation and stability of nonlinear impulsive neutral delay differential equations are equivalent to oscillation and stability of corresponding nonimpulsive neutral delay differential equations. At last, two examples are given to illustrate the importance of this study.

ON THE STABILITY OF FUNCTIONAL EQUATIONS IN n-VARIABLES AND ITS APPLICATIONS

  • KIM, GWANG-HUI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.321-338
    • /
    • 2005
  • In this paper we investigate a generalization of the Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(X))\;=\;\phi(X)f(X)$, where X lie in n-variables. As a consequence, we obtain a stability result in the sense of Hyers, Ulam, Rassias, and Gavruta for many other equations such as the gamma, beta, Schroder, iterative, and G-function type's equations.

THE STABILITY OF THE GENERALIZED FORM FOR THE GAMMA FUNCTIONAL EQUATION

  • Kim, Gwang-Hui;Lee, Young-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2000
  • The modified Hyers-Ulam-Rassias Stability Of the generalized form g(x+p) : $\phi$(x)g(x) for the Gamma functional equation shall be proved. As a consequence we obtain the stability theorems for the gamma functional equation.

  • PDF

Stability Analysis of Linear Uncertain Differential Equations

  • Chen, Xiaowei;Gao, Jinwu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.2-8
    • /
    • 2013
  • Uncertainty theory is a branch of mathematics based on normolity, duality, subadditivity and product axioms. Uncertain process is a sequence of uncertain variables indexed by time. Canonical Liu process is an uncertain process with stationary and independent increments. And the increments follow normal uncertainty distributions. Uncertain differential equation is a type of differential equation driven by the canonical Liu process. Stability analysis on uncertain differential equation is to investigate the qualitative properties, which is significant both in theory and application for uncertain differential equations. This paper aims to study stability properties of linear uncertain differential equations. First, the stability concepts are introduced. And then, several sufficient and necessary conditions of stability for linear uncertain differential equations are proposed. Besides, some examples are discussed.

GENERALIZED FORMS OF SWIATAK'S FUNCTIONAL EQUATIONS WITH INVOLUTION

  • Wang, Zhihua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.779-787
    • /
    • 2019
  • In this paper, we study two functional equations with two unknown functions from an Abelian group into a commutative ring without zero divisors. The two equations are generalizations of Swiatak's functional equations with an involution. We determine the general solutions of the two functional equations and the properties of the general solutions of the two functional equations under three different hypotheses, respectively. For one of the functional equations, we establish the Hyers-Ulam stability in the case that the unknown functions are complex valued.

CONE VALUED LYAPUNOV TYPE STABILITY ANALYSIS OF NONLINEAR EQUATIONS

  • Chang, Sung-Kag;Oh, Young-Sun;An, Jeong-Hyang
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.835-847
    • /
    • 2000
  • We investigate various ${\Phi}$(t)-stability of comparison differential equations and we obtain necessary and/or sufficient conditions for the asymptotic and uniform asymptotic stability of the differential equations x'=f(t, x).

  • PDF