THE STABILITY OF THE GENERALIZED FORM FOR THE GAMMA FUNCTIONAL EQUATION

GWANG HUI KIM AND YOUNG WHAN LEE

ABSTRACT. The modified Hyers-Ulam-Rassias stability of the generalized form $g(x+p)=\varphi(x)g(x)$ for the Gamma functional equation shall be proved. As a consequence we obtain the stability theorems for the gamma functional equation.

1. Introduction

The stability problem of functional equations was originally raised by S. M. Ulam [5] in 1940. He posed the following problem: Under what conditions does there exist an additive mapping near an approximately additive mapping? In 1941, this problem was solved by D. H. Hyers [1] in the case of Banach space as follows:

THEOREM A. Let $f: E_1 \longrightarrow E_2$ be a mapping between Banach spaces satisfying the inequality

$$||f(x+y) - f(x) - f(y)|| \le \delta$$

for some $\delta > 0$ and for all $x, y \in E_1$. Then there exists a unique additive mapping $T: E_1 \longrightarrow E_2$ such that

$$||f(x) - T(x)|| \le \delta$$

holds true for all $x \in E_1$, and if f(tx) is continuous in t for each fixed x, then T is a linear mapping.

Thereafter we call the type of Theorem A the Hyers-Ulam stability. In 1978, Th. M. Rassias [4] extended the result of Hyers (Theorem A) by

Received April 14, 1999. Revised June 10, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 39B22, 39B72.

Key words and phrases: functional equations, stability of functional equations, modified Hyers-Ulam-Rassias stability.

considering the cases where the Cauchy difference f(x+y) - f(x) - f(y) is not bounded:

THEOREM B. Let E_1, E_2 be Banach spaces, and let $f: E_1 \longrightarrow E_2$ be a mapping. Assume that there exist $\theta > 0$ and $0 \le p < 1$ such that

(1)
$$||f(x+y)-f(x)-f(y)|| \le \theta(||x||^p + ||y||^p)$$
, for any $x, y \in E_1$.

Then there exists a unique additive mapping $T: E_1 \longrightarrow E_2$ for which the inequality

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p,$$

holds true for any $x \in E_1$. If, in addition, f(tx) is continuous in t for each fixed $x \in E_1$, then the mapping T is linear.

By regarding a large influence of Theorem B on the study of stability problems of several functional equations, the stability phenomenon of such type is called the Hyers-Ulam-Rassias stability. If the inequality (1) whose right-hand side is replaced by some suitable mapping $\varphi(x,y)$ which is stable, then the additive Cauchy equation is said to have the modified Hyers-Ulam-Rassias stability. These terminologies are similarly applied to the cases of other functional equations.

The aim of the present note is to give modified Hyers-Ulam-Rassias stability of the generalized form for the gamma functional equation

(2)
$$g(x+p) = \varphi(x)g(x),$$

where p is a natural number, and also it is same throughout this paper. Note that the gamma function is a solution for special case of (2).

Let mappings φ and $\phi:(0,\infty)\longrightarrow(0,\infty)$ satisfy the inequality

(3)
$$\Phi(x) = \sum_{j=0}^{\infty} \phi(x+jp) \prod_{i=0}^{j} \frac{1}{\varphi(x+ip)} < \infty$$

for all $x \in (0, \infty)$.

Throughout this paper, let $\delta, p > 0$ be fixed. By using an idea in [4] we can prove the following theorem:

Theorem. If a function $g:(0,\infty)\longrightarrow R$ satisfies the following inequality

$$|g(x+p) - \varphi(x)g(x)| \le \phi(x)$$

for all x>0, then there exists a unique solution $f:(0,\infty)\longrightarrow R$ of the equation (2) with

$$(5) |g(x) - f(x)| \le \Phi(x)$$

for all x > 0. If the range of g is $(0, \infty)$, then the range of f is $(0, \infty)$.

2. Proof of Theorem

For any x > 0 and for every positive integer n we define

$$P_n(x) = g(x + np) \prod_{i=0}^{n-1} \frac{1}{\varphi(x + ip)}.$$

By (4), we have

$$|P_{n+1}(x) - P_n(x)|$$

$$= |g(x + (n+1)p) - \varphi(x + np)| g(x + np)| \prod_{i=0}^{n} \frac{1}{\varphi(x + ip)}$$

$$\leq \phi(x + np) \prod_{i=0}^{n} \frac{1}{\varphi(x + ip)}.$$

Now we use an induction on n to prove

$$|P_n(x) - g(x)| \le \sum_{j=0}^{n-1} \phi(x+jp) \prod_{i=0}^j \frac{1}{\varphi(x+ip)}$$

for the fixed x > 0 and for all positive integers n. For the case n = 1, the above inequality is an immediate consequence of (4). Assume that it holds true for some n. Then

$$|P_{n+1}(x) - g(x)| \le |P_{n+1}(x) - P_n(x)| + |P_n(x) - g(x)|$$

 $\le \sum_{j=0}^n \phi(x+jp) \prod_{i=0}^j \frac{1}{\varphi(x+ip)}.$

Now let m, n be positive integers with $n \ge m$. Suppose x > 0 are given By (3), we have

$$|P_n(x) - P_m(x)| \le \sum_{j=m}^{n-1} |P_{j+1}(x) - P_j(x)|$$

$$\le \sum_{j=m}^{n-1} \phi(x+jp) \prod_{i=0}^j \frac{1}{\varphi(x+ip)} \longrightarrow 0$$

as $m \longrightarrow \infty$. This implies that $\{P_n(x)\}$ is a Cauchy sequence for x > 0 and hence we can define a function $f:(0,\infty) \longrightarrow R$ by

$$f(x) = \lim_{n \to \infty} P_n(x).$$

Since $P_n(x+p) = \varphi(x)P_{n+1}(x)$, we have

$$f(x+p) = \varphi(x)f(x)$$

for any x > 0. Also we have

$$|f(x) - g(x)| = \lim_{n \to \infty} |P_n(x) - g(x)|$$

$$\leq \sum_{i=0}^{\infty} \phi(x+jp) \prod_{i=0}^{j} \frac{1}{\varphi(x+ip)} = \Phi(x)$$

for all x > 0. If $h: (0, \infty) \longrightarrow R$ is an another function which satisfies

$$h(x+p) = \varphi(x)h(x)$$

and
$$|h(x) - g(x)| \le \Phi(x)$$
 for all $x > 0$, then
$$|f(x) - h(x)|$$

$$= \prod_{i=0}^{n-1} \frac{1}{\varphi(x+ip)} |f(x+np) - h(x+np)|$$

$$\le 2\Phi(x+np) \prod_{i=0}^{n-1} \frac{1}{\varphi(x+ip)}$$

$$= 2\sum_{j=0}^{\infty} \phi(x+(n+j)p) \prod_{i=0}^{n+j} \frac{1}{\varphi(x+ip)}$$

$$= 2\sum_{j=n}^{\infty} \phi(x+jp) \prod_{i=0}^{j} \frac{1}{\varphi(x+ip)} \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty.$$

Hence, f(x) = h(x) holds.

3. Applications to Gamma Functional Equation

The following functional equation

(6)
$$g(x+1) = xg(x) \text{ for all } x > 0$$

is called the gamma functional equation. It is well-known that the gamma function

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \qquad (x > 0)$$

is a solution of the gamma functional equation (6). Jung ([3], [2]) obtained the stability theorems of the gamma functional equation. We can obtain them from our Theorem as follows:

COROLLARY 2. If a mapping $g:(0,\infty)\longrightarrow R$ satisfies the inequality $|g(x+1)-xg(x)|\leq \delta$

for all x > 0, then there exists a unique solution $f:(0,\infty) \longrightarrow R$ of the gamma functional equation (6) with

$$|g(x) - f(x)| \le \frac{3\delta}{r}$$

for all x > 0.

PROOF. Apply Theorem and condition (3) with $p=1, \ \varphi(x)=x, \ \phi(x)=\delta.$

COROLLARY 3. If a mapping $g:(0,\infty)\longrightarrow R$ satisfies the inequality

$$|g(x+1) - xg(x)| \le \phi(x)$$

for all x > 0, then there exists a unique solution $f:(0,\infty) \longrightarrow R$ of the gamma functional equation (6) with

$$|g(x) - f(x)| \le \Phi(x)$$

for all x > 0.

PROOF. Apply Theorem and condition (3) with p = 1, $\varphi(x) = x$. \square

References

- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U. S. A. 27 (1941), 222-224.
- [2] S.-M. Jung, On the modified Hyers-Ulam-Rassias stability of the functional equation for gamma function, Mathematica, Cluj 39 (62) (1997), no. 2, 233-237.
- [3] —, On the stability of gamma functional equation, Results Math. 33 (1998), 306-309.
- [4] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [5] S. M. Ulam, Problems in Modern Mathematics, Science editions, Wiley, New York, 1960.

Gwang Hui Kim
Department of Mathematics
Kangnam University
Suwon 449-702, Korea

E-mail: ghkim@kns.kangnam.ac.kr

Young Whan Lee
Department of Mathematics
Taejon University
Taejon 300-716, Korea
E-mail: ywlee@dragon.taejon.ac.kr