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h-STABILITY OF LINEAR IMPULSIVE DIFFERENTIAL
EQUATIONS VIA SIMILARITY

Sung Kyu Choi*, Namjip Koo**, and Chunmi Ryu***

Abstract. In this paper we study h-stability for the linear im-
pulsive equations using the notion of kinematical similarity and
impulsive integral inequality.

1. Introduction

The impulsive differential equations are adequate mathematical mod-
els for description of evolution processes characterized by the combina-
tion of a continuous and jump change of their states. It is now be-
ing recognized that the theory of impulsive differential equations is not
only richer than the corresponding theory of differential equations but
also represents a more natural framework for mathematical modelling of
many real world phenomena. For a detail discussion of impulsive inte-
gral inequalities and some basic concepts about the impulsive differential
equations, we refer the reader to [1, 5].

The notion of h-stability was introduced by Pinto [6, 7] with the in-
tention of obtaining results about stability for a weakly stable system (at
least, weaker than those given exponential asymptotic stability) under
some perturbation. The various notions about h-stability given in [8]
include several types of known stability properties as uniform stability,
uniform Lipschitz stability and exponential asymptotic stability.
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Medina and Pinto investigated the important properties about h-
stability for the various differential systems and difference systems [6, 7,
8, 9].

We studied h-stability for the nonlinear Volterra integro-differential
system [3] and for the nonlinear perturbed systems [2]. Moreover, the
notions of t∞-similarity and Liapunov functions were used to study h-
stability for nonlinear differential systems [4].

In this paper we study h-stability for the linear impulsive equations
using the notion of kinematical similarity and impulsive integral inequal-
ity.

2. Main results

Let the sequence (τk) be fixed and satisfy the condition

τk < τk+1, k ∈ Z and lim
k→±∞

τk = ±∞. (2.1)

Denote by PC(R,Rn×n) the set of functions ψ : R → Rn×n which are
continuous for t ∈ R, t 6= τk, are continuous from the left for t ∈ R, and
have discontinuities of the first kind at the points τk ∈ R for each k ∈ Z.

Consider the linear homogeneous impulsive equation{
x′ = A(t)x, t 6= τk,

∆x = Akx, t = τk, k ∈ Z,
(2.2)

under the assumption that the following condition holds:

A(t) ∈ PC(R,Rn×n), Ak ∈ Rn×n, k ∈ Z. (2.3)

Consider the linear homogeneous impulsive equation{
y′ = B(t)y, t 6= τk,

∆y = Bky, t = τk, k ∈ Z,
(2.4)

where B(t) ∈ PC(R,Rn×n), Bk ∈ Rn×n, and det(E + Bk) 6= 0 for each
k ∈ Z and the perturbed linear homogeneous impulsive equation of (2.2){

y′ = A(t)x + D(t)x, t 6= τk,

∆y = Aky + Dky, t = τk, k ∈ Z,
(2.5)

where D(t) ∈ PC(R,Rn×n), and Dk ∈ Rn×n, det(E + Ak + Dk) 6= 0 for
each k ∈ Z.

Lemma 2.1. [1, Theorem 1.5] Let conditions (2.1) and (2.3) hold.
Then the following statements hold:
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(1) For any (t0, x0) ∈ R×Rn, there exists a unique solution of equation
(2.2) with x(t+0 ) = x0 (or x(t0) = x0)) and this solution is defined
for t > t0 (or t ≥ t0).

(2) If det(E +Ak) 6= 0 for each k ∈ Z, then this solution is defined for
all t ∈ R.

Next result follows from a simple calculation.

Lemma 2.2. [1] Each solution y(t) of (2.5) satisfies the integro-summary
equation

y(t) = X(t, s)y(s) +
∫ t

s
X(t, τ)D(τ)y(τ)dτ

+
∑

s≤τk<t

X(t, τ+
k )Dky(τk), t ≥ s,

where X(t, s) is the Cauchy matrix for equation (2.2).

Lemma 2.3. [1, Lemma 1.4] Suppose that for t ≥ t0 the inequality

u(t) ≤ c +
∫ t

t0

b(s)u(s)ds +
∑

t0≤τk<t

βku(τk) (2.6)

holds, where u ∈ PC(R,R), b ∈ PC(R,R+) and βk ≥ 0, k ∈ Z and c are
constants. Then we have

u(t) ≤ c
∏

t0≤τk<t

(1 + βk) exp(
∫ t

t0

b(s)ds) (2.7)

≤ c exp(
∫ t

t0

b(s)ds +
∑

t0≤τk<t

βk), t ≥ t0. (2.8)

Remark 2.4. If A(t) and B(t) are similar(i.e., there exists an invert-
ible bounded matrix S(t) with bounded S−1(t) such that SAS−1 = B),
then exp(At) and exp(Bt) are similar.

Definition 2.5. The zero solution x = 0 of (2.2) is called h-stable if
there exist a positive bounded left continuous function h : R+ → R and
a constant c ≥ 1 such that

|x(t, t0, x0)| ≤ c|x0|h(t)h−1(t0), t ≥ t0,

for |x0| small enough (here h−1(t) = 1
h(t)).

We need the following lemma for h-stability of solutions of linear
impulsive differential systems.
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Lemma 2.6. [7, Lemma 1] The linear impulsive system (2.2) is h-
stable if and only if there exist a constant c ≥ 1 and a positive bounded
left continuous functions h defined on R+ such that for every x0 ∈ Rn,

|X(t, t0)| ≤ ch(t)h(t0)−1, t ≥ t0 ≥ 0, (2.9)

where X(t, t0) is the Cauchy matrix of (2.2).

Theorem 2.7. If the zero solution x = 0 of (2.2) is h-stable and there
exists a constant M > 0 such that

∫ ∞

0
|D(s)|ds +

∑

0≤τk≤∞
h(τk)h(τ+

k )−1|Dk| ≤ M, (2.10)

then the zero solution y = 0 of (2.5) is h-stable.

Proof. It follows from Lemma 2.2 that the solution y(t, t0, y0) of (2.5)
satisfies the corresponding impulsive integral equation

y(t) = X(t, t0)y(t0) +
∫ t

t0

X(t, τ)D(τ)y(τ)dτ

+
∑

t0≤τk<t

X(t, τ+
k )Dky(τk), t ≥ t0, (2.11)

where X(t, t0) is the Cauchy matrix for linear impulsive equation (2.2).
Then, from Lemma 2.6, there exist a constant c ≥ 1 and a positive
bounded left continuous function h : R+ → R such that

|X(t, t0)| ≤ ch(t)h(t0)−1, t ≥ t0,

where X(t, t0) is the Cauchy matrix for (2.2). Thus we obtain

|y(t)| ≤ |X(t, t0)||y(t0)|+
∫ t

t0

|X(t, τ)||D(τ)||y(τ)|dτ

+
∑

t0≤τk<t

|X(t, τ+
k )||Dk||y(τk)|

≤ h(t)h(t0)−1|y(t0)|+
∫ t

t0

h(t)h(τ)−1|D(τ)||y(τ)|dτ

+
∑

t0≤τk<t

h(t)h(τ+
k )−1|Dk||y(τk)|, t ≥ t0.
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Letting u(t) = |y(t)|
h(t) , we have

u(t) ≤ u(t0) +
∫ t

t0

|D(s)|u(s)ds

+
∑

t0≤τk<t

h(τk)h(τ+
k )−1|Dk|u(τk), t ≥ t0.

By the Gronwall impulsive integral inequality [1], we obtain

|y(t)|

≤ h(t)h(t0)−1|y(t0)| exp(
∫ t

t0

|D(s)|ds +
∑

t0≤τk<t

h(τk)h(τ+
k )−1|Dk|)

≤ h(t)h(t0)−1|y(t0)| exp(
∫ ∞

t0

|D(s)|ds +
∑

t0≤τk<∞
h(τk)h(τ+

k )−1|Dk|)

≤ c|y(t0)|h(t)h(t0)−1, t ≥ t0,

where c = exp(M). Hence the zero solution y = 0 of (2.5) is h-stable.
The proof is complete.

Remark 2.8. We note that if h(t) is continuous in Theorem 2.7, then
we have h(τk)

h(τ+
k )

= 1 for each k ∈ N.

We can obtain the following results in Theorem 2.3 [1] as the corollary
of Theorem 2.7.

Corollary 2.9. Suppose that the assumptions of Theorem 2.7 hold.

(1) If we set h(t) = c for each t ∈ R+ in Theorem 2.7, then the zero
solution y = 0 of (2.5) is uniformly stable.

(2) If h(t) → 0 as t → ∞, then the zero solution y = 0 of (2.5) is
asymptotically stable.

Example 2.10. To illustrate Lemma 2.6, consider the linear impul-
sive differential equation

x′(t) = a(t)x, t 6= τk,

∆x = akx, t = τk, k ∈ Z, (2.12)

where a(t) ∈ PC(R,R), ak ∈ R, and det(1 + ak) 6= 0 for each k ∈ Z.
Suppose that

∫∞
t0
|a(s)|ds < ∞ for each t0 ∈ R and

∑
t0≤τk≤∞ |ak| < ∞.

Then the zero solution x = 0 of (2.12) is h-stable.
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Proof. Let (t0, x0) ∈ R× R. Then we have

X(t, t0) =
∏

t0≤τk<t

(1 + ak) exp(
∫ t

t0

a(s)ds), t ≥ t0,

and furthermore

|X(t, t0)| = |
∏

t0≤τk<t

(1 + ak) exp(
∫ t

t0

a(s)ds)|

≤ exp(
∫ t

t0

|a(s)|+
∑

t0≤τk≤∞
|ak|)|

≤ ch(t)h(t0)−1, t ≥ t0,

where h(t) = exp(
∫ t
0 |a(s)|ds) is a bounded positive function for t ≥ t0

and

1 ≤ c = exp(
∑

t0≤τk≤∞
|ak|) < ∞.

Hence the zero solution x = 0 of (2.12) is h-stable by Lemma 2.6.

Denote by S the set of all matrix functions S : R+ → Rn×Rn which
belong to PC(R+,Rn×Rn) and are bounded in R+ together with inverse
S−1(t). Let M be denoted by

M = {(A,Ak) | A ∈ PC(R+,Rn × Rn), Ak ∈ Rn × Rn,

det(E + Ak) 6= 0, k ∈ N}.
Definition 2.11. We say that (A,Ak) ∈M is kinematically similar

to (B, Bk) ∈M if there exists a matrix function S ∈ S such that

S′(t)−A(t)S(t) + S(t)B(t) = 0, t 6= τk,

∆S(τk)−AkS(τk) + S(τ+
k )Bk = 0, t = τk, k ∈ N,

where ∆S(τk) = S(τ+
k ) − S(τk). We say that equations (2.2) and (2.4)

are kinematically similar if (A, Ak) ∈ M is kinematically similar to
(B, Bk) ∈M.

Remark 2.12. The notion of kinematical similarity is an equivalence
relation in the set M, and it preserves various stability concepts: sta-
bility, uniform stability, uniform asymptotic stability, strict stability [1,
Theorem 10.2].

The results of various stabilities in Theorem 10.2 [1] are generalized
for impulsive linear equations using the kinematical similarity.
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Theorem 2.13. Suppose that (2.2) and (2.4) are kinematically sim-
ilar. Then (2.2) is h-stable if and only if (2.4) is also h-stable.

Proof. Suppose that (2.2) is h-stable. Then there exist a constant
c ≥ 1 and a positive bounded left continuous function h defined on R+

such that
|X(t, t0)| ≤ ch(t)h(t0)−1, t ≥ t0 ≥ 0, (2.13)

where X(t, t0) is the Cauchy matrix of (2.2). Since (2.2) and (2.4) are
kinematically similar, we see that the change of variables

x = S(t)y

transforms equation (2.2) into (2.4). We obtain the following relation:

X(t)X−1(τ) = S(t)Y (t)Y −1(τ)S−1(τ), t, τ ∈ R+,

where X(t) and Y (t) are fundamental matrices of (2.2) and (2.4), re-
spectively. Thus we obtain

|Y (t, t0)| = |Y (t)Y −1(t0)| = |S−1(t)X(t)X−1(t0)S(t0)|
≤ |S−1(t)||X(t)X−1(t0)||S(t0)|
≤ c1c2ch(t)h(t0)−1

≤ dh(t)h(t0)−1, t ≥ t0 ≥ 0,

where d = cc1c2 is a constant. Hence (2.4) is h-stable by Lemma 2.6.
The converse also holds. Hence the proof is complete.

Corollary 2.14. Suppose that (2.2) and (2.4) are kinematically
similar.

(1) If we set h(t) = c for a some positive constant c, then (2.2) is
uniformly stable if and only if (2.4) is also uniformly stable.

(2) If we set h(t) = e−λt for a some positive constant λ, then (2.2) is
uniformly exponentially stable if and only if (2.4) is also uniformly
exponentially stable.
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