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CONE VALUED LYAPUNOV TYPE STABILITY
ANALYSIS OF NONLINEAR EQUATIONS

SuNG KAG CHANG, YOUNG SUN OH, AND JEONG HYANG AN

ABSTRACT. We investigate various ¢(t)-stability of comparison dif-
ferential equations and we obtain necessary and/or sufficient con-
ditions for the asymptotic and uniform asymptotic stability of the
differential equations ' = f(¢, z).

1. Preliminaries and Definitions

Lyapunov second methods are now well established subjects as the
most powerful techniques of analysis for the stability and qualitative
properties of nonlinear differential equations 2’ = f(¢,z), z(to) = zo €
RN,

One of the original Lyapunov theorems is as follows :

LyApuNov THEOREM. For 2’ = f(t,z), assume that there exists a
function V : Ry x S, — R, such that

(i) V is C'-function and positive definite,

(ii) V is decresent,

(it) $V(¢t,2) = Vi(t,z) + V; - f(t,2) < —a(ljz||) fort > 0, z € S,,,
where S, = {z € RV|||z| < p} for p > 0, a(r) is strictly increasing
function with a(0) = 0.

Then the trivial solution z(t) = O is uniformly asymptotically stable.

The advantage of the method is that it does not require the knowl-
edge of solutions to analyse the stability of the equations. However in
practical sense, how to find suitable Lyapunov functions V for given
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equations are the most difficult questions. Hence weakening the condi-
tions (i), (ii), and (iii), and enlarging the class of Lyapunov functions
are basic trends in Lyapunov stability theory (2, 3, 4, 5, 6, 11].

In the unified comparison frameworks, Ladde (7] analysed the sta-
bility of comparison differential equations by using vector Lyapunov
function methods.

Lakshmikantham and Leela [9] initiated the cone valued Lyapunov
function methods to advoid the quasimonotonicity assumption of com-
parison equations. They obtained various useful differential inequal-
ities with cone-valued Lyapunov functions. Akpan and Akinyele [1]
extended and generalized the results of [7, 9] to the ¢o-stabilities of the
comparison differential equations by using the cone-valued Lyapunov
functions.

Here we generalize, in some sense, the results of [1] to the ¢(t)-
stabilities of comparison equations below.

Let R™ denote the n-dimensional Euclidean space with any equiva-
lent norm || - ||, and scalar product (, ). Ry =[0,00). C[R4+ x R™, R"]
denotes the space of continuous functions from K, x R™ into R™.

DEFINITION 1.1 ([11]). A proper subset K of R™ is called a cone
if ) \K C K, A>0; (ii) K+ K C K; (iii) K = K; (iv) K° # 0;
(v) KN (—=K) = {0}, where K and K° denote the closure and interior
of K, respectively, and K denotes the boundary of K. The order
relation on R™ induced by the cone K is defined as follows :

Forz,yce R*", 2 <pyiffy—zrze K,andx <po yiff y —z € K°.

DEFINITION 1.2 ([11]). The set K* = {¢ € R™: (¢,z) > 0, for all
z € K} is called the adjoint cone of K if K* itself satisfies Definition
1.1.

Note that z € K if and only if (¢, z) = 0 for some ¢ € Ky*, where
Ky = K — {0}.

Consider the differential equation
(1) r = f(ta x)a x(tO) = Zo,t0 > 0
where f € C[Ry x RN,RN] and f(t,0) = 0 for all t > 0. Let S,

{zre RN :|z| <p},p>0 Let KC R"beaconein R*, n
N. For V € C[R+ x S,,K], at (t,z) € Ry x S,, let DTV (¢, z)

IA
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limsup(—lﬁ)[V(t + h,z + hf(t,z)) — V(¢,z)] be a Dini derivative of V
h—0+
along the solution curves of the equation (1).

Consider a comparison differential equation
(2) ul = g(t,U), u(tO) = uo, tO Z 0

where g € C[Ry x K, R"], g(t,0) =0 for all t > 0 and K is a cone in
R™.
Let S(p) ={u € K : |ju|| <p}, p> 0. For v e C[R; x S(p), K], at
(t,u) € Ry x S(p), let DT u(t,u) = limsup(=)[v(t + h,u + hg(t, u)) —
h—ot N

v(t,u)] be a Dini derivative of v along the solution curves of the equa-
tion (2).

DEFINITION 1.3 ([11]). A function g : D — R™, D C R", is said
to be quasimonotone nondecreasing relative to the cone K when it
satisfies that if z,y € D with z <g y and (¢o,y — =) = 0 for some
¢o € K§, then (¢o,9(y) — g(z)) = 0.

DEFINITION 1.4 ([8, 10]). The trivial solution z = 0 of (1) is eg-
uistable if for each € > 0, ty € R4, there exists a positive function
d = 0(to, €) such that the inequality ||zo|| < § implies ||z (¢, to, z0)|| < €,
for all t > ¢g.

Other stability notions can be similarly defined (8, 10].

Now we give cone-valued ¢(t)-stability definitions of the trivial so-
lution of (2).

DEFINITION 1.5 ([12]). Let ¢ : [0,00) — K™* be a cone-valued
function. The trivial solution u = 0 of (2) is

(a) H(t)-equistable if for each € > 0, to € R4, there exists a positive
function ¢ = §(fo, €) such that the inequality (¢(tp), uo) < & implies
(¢(t),r(t)) < €, for all t > to where r(t) is a maximal solution of
(2);

(b) wuniformly ¢(t)-stable if the § in (a) is independent of ¢y ;

(c) quasi-equi asymptotically ¢(t)-stable if, for each € > 0, tg € Ry,
there exist positive numbers § = §(tg) and T = T'(¢g,¢) such that
(¢(to), uo0) < 6 implies (¢(t),r(t)) < € for all t > to + T
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Then the trivial solution u = 0 of (2) is equi-asymptotically ¢(t)-
stable.

Proof. By Theorem 2.1, the trivial solution of (2) is ¢(t)-equistable.
By the formula (3), (¢(t), v(¢,u(t))) is monotone decreasing in ¢ and
hence the limit v* = tl_i)m (¢(t), v(t,u(t))) exists. Suppose v* # 0. Then
c(v*) # 0, c € K. Since c(r) is monotone, c[(¢(t),v(t, u(t)))] > c(v*),
and so Dt (¢(t), v(t,u(t))) < —c[(6(t), v(t, u(t)))] < ~c(v*). Then

/t D (@(s), v(s, u(s)))ds < / —e(v*)ds.

to

Thus (¢(2), v(t, u(t))) < —c(v*)(t —to) + (#(to), v(to, uo)). Accordingly,
as t — oo, we have (4(t),v(t,u(t))) — —oo. This contradicts the
condition a[(¢(t),r(t))] < (¢(t),v(t,u(t))). It follows that v* = 0.
Thus (¢(t), v(t,u(t))) — 0 as t — oo and so (¢(t),r(t)) — 0 as t — co.
Hence given € > 0, and for each ¢, € R, there exist § = §(tp) and
T = T(to,e) such that for all ¢ > to + T, (¢(to),u0) < & implies
(6(2), (1)) <e. U

THEOREM 2.4. Let the hypothesis of Theorem 2.2 hold with

DT (g(t), v(t, u(t)) < —cl((2), 7(2))]

for each t > to where ty € R+ and for some c € K.
Then the trivial solution u = 0 of (2) is uniformly asymptotically ¢(t)-
stable.

Proof. By Theorem 2.2, the trivial solution u = 0 of (2) is uniformly
¢(t)-stable. Let € > 0 be arbitrarily given. Choose § = 6(g) which is
independent of ¢y. Let u(t) be a solution of (2) such that (¢(to), ug) < 6.
Let v* = sup{(¢(t), v(t, u(t)))l(4(to), uo) < 6}. Set T(e) = v*/c(e).
We claim that

(4) (#(to), uo) < 6 implies (@(t),r(t)) <e, t>to+ T(e).

Suppose that (4) is not true. Then there would exist at least one
t > to+T(¢) such that (¢(to), uo) < J implies (#(t),r(t)) > €. Sincec €
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K, from the condition D*(¢(t),v(t,u(t))) < —c[(¢(t),(t))], we have
D:’(¢>( ho(tu(t) < —c[(6(t),r(t))] < -—cle).  Integrating,

DT (p(s), v(s, u(s)))ds < ft —c(e)ds implies that ((t), v(t, u(t))) <

(6(t0), t0,u0)) — c(e)(¢ — to) for all 20 + T().
Then tl_l)m (o(t), v(t,u(t))) = —oo which is a contradiction. O

THEOREM 2.5. Assume that
(i) V € C[R+ x S,, K], V(t,z) is locally Lipschitzian in z relative to
K and for (t,z) € Ry x S,, DTV (t,z) <k g(t,V(t,x)),
(ii) g € C[R+ x K, R™] and g(t,u) is quasimonotone in u relative to K
for each t € Ry,
(iii) there exist a,b € K such that for some ¢(t) € Ko*, for eachx € S,,,
b(llzll) < (6(2), V(t, ) < a(llz]), t > to > 0.
Then the trivial solution x = 0 of (1) has the corresponding one of the
stability properties if the trivial solution v = 0 of (2) has each one of
the ¢(t)-stability properties in Definition 1.5.

Proof. Suppose that the trivial solution u = 0 of (2) is ¢(¢)-equistable.
Let 0 < & < p be arbitrarily given and ¢y € R,. Then there exists
8 = 6(to,e) > 0 such that (¢(to),uo) < & implies (¢(t),r(t)) < b(e)
for all t > tg where r(t) be a maximal solution of (2) relative to K.
For given o = z(tp) € S,, we can take up = u(tp) in K such that
a(llz(to)ll) = (#(to), u(to)) and V(to, z(t0)) <k uo.

Note that if 2(t, to, o) is any solution of (1) such that V (o, z(to)) <k
up, then by Lemma 1.6, V (¢, z(t)) <k r(t).

From (iii), we may assume that V'(¢,0) = 0. Suppose ug € K° and

(é(to),ug) < é. Since V(¢,z) is continuous in z, there exist é(ug) > 0
such that V(to,z0) <k uo for any ||z < 4.
Now choose §; > 0 such that a(d;) < § and §; < §. Then the in-
equalities [|z(to)|| < d1 and a(||z(to)|]) < & hold simultaneously. Since
b(lz@))) < (6(8),V(t,z(t))) < (8(t),r(t)) < b(e) for all t > to,
lz(t; to, z0)|| < € whenever ||z(to)|| < 6;. Hence the trivial solution
z = 0 of (1) is equistable.

In the above, choosing § = d(¢) which is independent of ¢y, the
uniform stability follows from the same argument.
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Suppose that the trivial solution u = 0 of (2) is quasi-equi asymp-
totically ¢(t)-stable. Then, following the same arguments for all ¢ >
to + T'(e), there exists a positive function § = §(tg,e) < € satisfying
lzo]l < 6 and a(||zo|]) < ¢ simultaneously. It follows that ||z|l < §
implies ||z (¢, to, z0)|| < €, t > to+T'(€). If this is not true, then there ex-
ists a divergent sequence {t;}, tx > to+ T such that ||z (tx,to, z0)|| = ¢
for some ||zg|| < 6, k = 1,2,---. Using (iii) and Lemma 1.6 we have
b(e) < (&(t), V(tk, z(tk, to, Zo)) < (¢(tk), 7(tk, o, uo)) < b(e) for some
ug € K which is a contradiction. The other stability properties can be
similarly proved. O

Now we investigate sufficient conditions for the existence of cone-
valued Lyapunov functions.

THEOREM 2.6. Assume that
(i) f € C[Ry x S,,R"], f(t,0) = 0, and f(t,z) satisfies a Lipschitz
condition in z such that || f (¢, :1:) FE&E I < Li@®)|lz—yl, ¢ ), (t,y) €
Ry xS, with6 > 0,t >0, ft+ L(s)ds < N for some constant N > 0.
(ii) The solution z(t,0,xo) of (1) satisfies that any zo € S,

(5)  Bullizoll) < llz(,0,20)ll < Ba(llzoll),  for some By, B2 € K.

(iii) g € C[R+ x K, R"|, g(t,0) = 0, and g(t,u) satisfies a Lipschitz
condition in u such that ||g(t,u) —g(¢t,v)|| < La(t)||lu—v||, (¢, u), (t,v) €
R+ x K.

(iv) The solution u(t,0,ugp) of (2) satisfies that

(6)  ml(e(t), uo)] < (B(8), u(t,0,u0)) < 22((¢(t),wo)], ¢ 20

for some ¢(t) € K, some v, v2 € K.
Then there exists a cone-valued function V with the properties
(a) V € CRy x S,,K], V(t x) is locally Lipschitzian in z for a con-
tinuous function [((t) >
(b) D¥V(t,z) <Kk g(t, ( z)).
(¢) b(ll=ll) < (¢(2), V(t,z)) < a(||z]]), for some a,b € K.
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Proof. From (i) and (iii), the existence and uniqueness of solutions
of (1) and (2) as well as their continuous dependence on the initial
values are followed.

Let z(t,0,20), u(t,0,up) be the solutions of (1) and (2) passing
through the points (0, o) and (0,up) satisfying (5) and (6), respec-
tively.

Let us choose a function G(r) such that G(0) = 0, G'(0) = 0,
G(r) >0, G"(r) > 0 for r > 0, and let o > 1,

G(r) = /OT du /Ou G"(v)dv and G(g) = /OT/a du /Ou G (v)dv,

we have, setting u = w/a,

G(z)—l/rd /w/ae"( )d <1/Td /wG”( Jdv = ~G(r)
p —a 5 w A v)av a Jo w o v 'U—a r).

Let w be any given point in Kp. Let oy, : S, — K be a function with
values in the cone K C R"™, defined by for z € S,,,

1+ ad
(7) 0w () =§§EG(II$(t+5,t,$)H)( T35

Jw.

For § = 0, we have from (7) that G(||z||)w <k ocw(z), and ($(t),
G(|lz|)w) < (¢(t), ow(z)) for any ¢(t) € K§ and each ¢ > 0. Suppose
that 1 = inf{(é(t),w) : t > 0} > 0. Let B3(r) = mG(r),r > 0. Then
Bs(|lz])) < (¢(t), 0w (z)), for each € > 0, let 6 = B5*(¢). From the esti-
mate (5), [lzol| < & impies [|z(t)]| < B2((lzoll) < B(6) = Ba(5(€)) =
g, t > 0.

Hence the solution £ = 0 of (1) is uniformly stable. Thus by
Theorem 5.4.3 in [13], |lz(t + §,t,2)|| < <(||z||), ¢ € K. Therefore
G|zt + d,t,2)|) < G(c(||z|l)). Since (1 + ad)/(1 +J) < «, it follow

that
(¢(t), 0w(z)) < (6(8), aGlc(||z))w)
< neaG(c(||=]]))-
Suppose that 7o = sup{(¢(t),w) : t > 0} < co. Hence if B4(r) =
n2aG(c(r)), then

(8) Bs(llzll) < (6(t), ow()) < Balllzl))-
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We now show that ¢,,(x) is locally Lipschitzian in z.
Define Vy(t, z) = sup G(||z(t +6, ¢, 2)]|)((1 + @d) /(1 + §)). Then, for
5>0

& = 0, we obtain G(||z||) < Vo(t, z) and Vp(¢,z) is locally Lipschitzian
in z, by Theorem 3.6.9 in [8],
ie., z,y € Sp, |Volt,z) — Volt,y)| < U(t)||z — y|| for each t.

low(@) ~ 0wl = lsup Ot + 6.t 2)) (=
§>0 -

'Jf‘
1+ad
1+46 Jll
< lwll[Vo(t, z) = Volt, )| < [lwlli(®)llz — yl-

—sup G(|ly(t + 6,¢, y)|)(
5>0

Then o, (z) is also locally Lipschitzian in z.
Define a cone-valued function V' (¢,z) by, t > 0,z € S,,

9) V(t,x) = u(t,0,0,(z(t,0,2))),
where u(t,0,ug) are solutions of (2) passing through (0,ug). By hy-
potheses (i) and (iii) and the choice of o,,(z), V(¢,z) is continuous in
t and z.
From conditions (i), (iii), and Corollary 2.7.1 in [8], we obtain, z,y €
Sps
IV (t,z) = V&, )l = llult, 0, 0u(x(t,0,2))) — u(t, 0, 0w (x(t,0,)))|

< llow(@(t,0,2)) — 0w (z(t,0,9))]| exp /0 La(s)ds
< 1B lwllllz(t,0,7) — (t,0,)]| exp /0 La(s)ds

< 1(®)[wllllz — vl exp / Ly(s)ds exp /0 Lo(s)ds
= B(t)llz -yl

where §(t) = I{t)||w]| exp{fOt(Ll(s) + Lo (s))ds] > 0, which implies that
V satisfies a local Lipschitz condition.
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Next, for h > 0 sufficiently small,
V(t+h,z+hf(t,z))-V(t, )
<k Bt)llz +hf(t z) —x(t + h,t,z)|e(t, z, )

+V(t+h,z(t+h,tz)) - V(t,z), where limsup %e(t,x, h) =0.

t—00

Divide both sides by h and take limsup as h — 0% to obtain

DtV (t,z)
<k limsup[lV(t + h,z(t+ h,t,z)) — V(t, )
h—0+ h
1
= limsup —[u(t + h, 0,04 (z(t + R, 0,2))) — u(t, 0, 04, ((t,0,2)))]
hoot R

=/(t,0,0,(z(t,0,2))) = g(t, V(t, z)).

Now from (5), we can take 81, 2 € K which satisfy (5) and (10) simul-
taneously,

(10) B H(llzll) < llz(t, 0,2)|f < B (ll).

Since (¢(t),V(t,z)) = (¢(t),u(t,0,04,(x(t,0,2z))) from (6), (8), and
(10) we have

(6(1), V(t,z) = n((8(t), ow(x(t, 0,2))))
2 71(53(||$(t’0’x)||))
> 71(8s(85 =) = b(Jlall), b€ K.

On the other hand

(@(2), V(t, ) < 72((6(t), 0w (2(t, 0,2))))
< 72(Ba(ll=ll))
< (BB (I21)) = alllall), a€ K.

This completes the proof of Theorem 2.6. 0
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