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THE UNIFORM ASYMPTOTIC STABILITY AND
THE UNIFORM ULTIMATE BOUNDEDNESS FOR
FUNCTIONAL DIFFERENTIAL EQUATIONS

YOUNHEE Ko

1. Introduction

The purpose of this paper is to present the uniform asymptotic
stability theorem and the uniform boundedness and uniform ultimate
boundedness theorem for functional differential equations.

We consider a system of functional differential equations with finite
delay. Also we consider a system of functional differential equations
with unbounded delay. For = € R”, |z| denotes & usual norm in R”,
and W; denotes a continuous function from R, into R, such that
Wi(0) = 0 and W, is strictly increasing on Ry == [0,00). Our main
goal is to generalize a theorem in [5] and to present sufficient conditions
to ensure that solutions of a systern of functional differential equations
with unbounded delay are uniformly bounded and uniformly ultimately
bounded. Liapunov methods are used throughout.

2. Uniform Asymptotic Stability for Functional Differential
Equations with Finite Delay

In this section we consider the system
(1) '(t) = F(t,x)
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where r, is the translation of x on [t — h,#] back to [—h,0], where
h > 0 is a fixed constant, and &' denotes the right-hand derivative.
The following notation will be used.

For h > 0, C denotes the space of continuous functions mapping
[—h,0] into R™, and for ¢ € C, ||¢]]| = sup |¢(s)| and |||@]|]] =
h<s<O

[f?h |¢(s)|? ds]z. Also, Cj; denotes the set of ¢ € C with ||¢|| < H. If z
is a continuous function of u defined for —h < u < A, with A > 0, and if
t is a fixed number satisfying 0 < t < A, then x; denotes the translation
of the restriction of z to [t — h, ] so that x; is an element of C defined
by z¢(f) = x(t +0) for —h < 6 <2 0. We denote by z(t) = z(tg, @)
a solution of (1) with the initial condition zy,(tg,d) = ¢ € C and we
denote by x(t, 1y, ¢) the value of z(tg, ¢) at t.

It is supposed that I/ : Ry x Oy — R"™ is continuous and takes
bounded sets into bounded sets ; where 0 < H < 2. It is well known
([1),[4]) that for each to € R4 and each ¢ € Cp there is at least one
solution z(tg, @) defined on an interval [tg,to + @ with @ > 0 and, if
there is an Hy < H with |x(¢, 19, ¢)| < Hj, then ¢ may be considered
to be oc.

A Liapunov functional is a continuous function V' (¢,¢) : Ry xCy —
R, whose derivative along a solution of (1) satisfies some specific rela-
tion. The derivative of a Liapunov functional V (¢, ¢) along a solution
x(t) of (1) may be defined by

Vi (t,¢) = limsup{V (¢t + &, x46(t,6)) — V(t,¢)}/6.
b0t

For a function a : R — R, we define ay and a_ by ay = max{a,0}
and a_ = max{—a,0}, respectively.

DEFINITION 2.1. Let F(t,0) =0, for all £ > 0.

(a) The zero solution of (1) is suid to be stable if for each ¢ > 0 and
to > 0 there is a & > 0 such that [¢ € Cs,t > to] imply |z(t, 19, ¢)| < €.

(b) The zero solution of (1) is uniformly stable (U.S.) if it is stable
and if 6 is independent of t;.

(¢) The zero solution of (1) is asymptotically stable (A.S.) if it is
stable and if for each #p > 0 there is a ¢ > 0 such that ¢ € C, implies
that z(t,tg, ¢} — 0 as  — oc.
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(d) The zero solution of (1) is uniformly asymptotically stable (U.AS)
if it is U.S. and if there is an 6§y > 0 and for each ¢ >> 0 there exists T > 0
such that [to € Ry, ¢ € Cs,,t > to + T] imply that |z(t,tg, ¢)| < e.

DEFINITION 2.2. A measurable function n : Ry — R is said to
satsify the condition (I) if for any e > 0 there exists a 6 = 6(e) > 0
such that

t+e
(I) /t n(s)ds > 6

for all + > 0.

REMARK 2.1. 1t is easy to check that the condition (I) implies that

for any 6 > 0 there exists an € = ¢(#) > 0 such that f:ﬂ n(s)ds > 0
for all t > 0.

DEFINITION 2.3. Let U : Ry x R™ — R be continuous and locally
Lipschiztian in z € R™ Then the derivative of U(t, z(t)) along a
solution z(t) of (1) is defined as

Uiy (t,z(t) = h;n;lip{U(h%é o(t) + 8F (t,xy)) — U(t, 2(t))}/6.

REMARK 2.2. (i) It is easy to check that

lim sup - U+ 8,0t +6)) - U(t,z(t))} = Upy(t,=(t))

for any solution z(t) of (1).
(ii) If U(¢, 2(t)) has continuous partial derivatives of the first order,
we have

Ul (t,2(t)) = grad U - F + 0U /8t

In presenting the uniform asymptotic stability theorem for func-
tional differential equations with finite delay, the following theorem is
basic.
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THEOREM A. [5] Let H > 0 andV : Ry xCy — Ry be continuous
and locally Lipschitz in ¢, and let n : Ry — R, be a measurable
t+S
function such that lim / n(s)ds = oo uniformly with respect to
] .

500
teRy.
Suppose there exist wedges Wy. Wy and W3 such that, for all t > 0
and ¢ in Cy,

(i) Wi(lo(0)]) < Vit ¢) < Wa(llol]),
(i) Vy(t ) < —n®Wa(|ll=|l]), and

(iii) / F(s.xs)ds is uniformly continuous

for any bounded solution x(t) of (1) on Ry. Then the zero solution of
(1) is uniformly asymptotically stable.

THEOREM 2.1. Let H > 0 and V : Ry x Cy -» R4 be continuous
and locally Lipschitzian in ¢, and let n : Ry — R, be a measurable
function that satisfies the condition (I). Suppose that U’ : Ry x R" —
R, is continuous and locally Lipschitzian in x € R™ and that there
exist wedges W1, Wo, W3, Wy and Wy such that, for any ¢ in Cyg and
any solution x(t) of (1)

(i) Wi(le(0)]) < V(t. o) < Wa(ll¢l]),
(i) V(1 (t,2) < =n(t)Ws([||z¢[[]), and
(iti) Wa(lz(#)]) < Ut z(1)) < Wi{z(t)]).

Furthermore, suppose that either

| Whytsatnyeds o / {Ulyts,a(s) ds

is uniformly continuous for any bounded solution xz(t) of (1) on R,.
Then the zero solution of (1) is uniformly asymptotically stable.

Proof. First we will show that the zero solution of (1) is uniformly
stable. Let € > 0 be given. Then there exists a 6 > 0 with 0 < W5(6) <
Wi(e). Let ¢ € Cs and ty > 0. Then for any t > 19

Wi(lz()]) < V(t,ae) < V(tg, )
< Wy(8) < Wi(e),
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where z(t) = z(t, 5, @) is a solution of (1). That is, |z(t)| < € for all
t 2 to. This implies that the zero solution of (1) is uniformly stable.

Let 0 < H' < H and take 6y = 6o(H’) of uniform stability. For
any € > 0, we will show that there is a T = T(¢) > 0 such that any
solution z(t, 1o, ¢) of (1) with |[¢|| < 6y satisfies |2(t, to, $)| < € for any
t > to+T. Let 6 = 6(¢) be the constant for uniform stability. Suppose
that a solution z(t) = z(t,t9,9), ||¢|| < b, satisfies ||z;(to, ¢)|| > &
for any t > to. Then we have t* € [t,t + h} for each t > t; such
that [z(#")] > 6. Also we can choose a constant, § = 6(e) > 0 with
W4(6) > W5(6) and 0 < 8 < 6.

Now we claim that there is an L = L(e) > 0 such that there is at
least ¢ € [t,# + L] with |z(¢)| < 6 for any t > to. By assumption on 7
we note that there is an L = L(e) > 0 with L > 2h such that

t+L .
/ n(s) ds > Wa(bo)/Ws(v/h6)

+h

for all t > to. If |2(t)| > 6 were true for all ¢ € [t,,t, + L] with some
t. > tg, then we would have

t.+L
0< V(ts +L) < Vite,d) / n(s)Ws(|l|ze(s)]]) ds

0
t.+L

< Wy (bo) — Wg(\/ﬁﬁ)/ n(s)ds
t.+h
WQ((SO) .
< W2(60) _ Wg(\/EG)—W“B(—\/ﬁ)— = U,

a contradiction. .
Now, we shall assume that / {U{1)(s,2(s)}+ ds is uniformly con-
0

tinuous on K. Then we may choose a sequence
t0<a1<ﬂ1<a2<[)’2<~-~<ai<u37;<-~-
such that, fori =1,2,3,-- -,

[w(cs)| = 0, |2(8:)] 2 6,6 < |z(t)] for any t € [o, Bi],
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and a;, 0; € I; = [to + (2¢ — 1)L, ty + 2¢L]. Thus we have

B

Wallo(B)) < U(Bia(8)) = [ Ujy(s,(s)) ds + Ulo.a(a)
B:
(U (5,26} 4 ds + Wyl

and
0 < Wy(8) — Ws(6) < / {U(l) s,x(8)) }+ ds.
By assumption there exists a p >> 0 with 8;—a; > pfori =1,2,3,---

Case 1) p< h
We note that

0 3 t -3
ledil= | [ o as] = | [ eras > /m=e
—_ t— .
for all t € [8;,8; + p] = J; with 4 ==1,2,3,---. Then we have

0< tlim V(t,zs) < V(ty,9) — Wa{\/h — pb} / n(s)ds = —oo,
el /s

where J = U;2,J;, a contradiction. Let N be the smallest positive
integer such that

N Bit+p
‘VQ(&O)—WYB(\/h“‘p(‘))Z/ T)(S)d8< 0.
i=1 i

Then N only depends on € and we can take T = (2N + 1)L such that,
at some 7 € [to,to + T} ||z+(to, ®)|| < 6, which implies |z(t)] < € for
allt > tg+ T.
Case 2) p>h
Now we note that

llzell = [/ \xt(s)ﬁdsr - [/h |:r<s>|2dsr >\ /2
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for all t € [3;,8; -+ &] = J; with i =1,2,3,---. Then we have

0< hm V(t,ze) < V(to,d) — Wg\/f / 00,

where J = U2, J;, a contradiction. Let N’ be the smallest positive
integer such that

B+2
Wy (bo) — \/ 9)2/ s)ds < 0.

Then N’ only depends on € and we can take 7 = (2N’ + 1)L such
that, at some 7 € [tp,to + T] |J2-(to,®)|| < é, which |z()| < € for all
t > to + 7. Hence the proof is complete.

REMARK 2.3. The condition that either

[ Witsatnheds  or [ (U (atan)-ds

is uniformly continuous for any bounded solutior: z(t) of (1) on Ry is
satisfied if

—p(t) SU((tz())  or  Upyylt,a(t)) < qlt),

t
where p, ¢ : R, — R, are measurable functions such that / p(s)ds
0

t
and q(s) ds are uniformly continuous on R .

0
Consider the scalar differential equation (1) and consider U (¢, z(t)) =

|z(¢)]. Then the condition that f(: F(s,z5)ds = ft x'(s)ds is uniformly
continuous for an} bounded solution z(t) of (1) on R is satisfied if

the condition ( fo |’ (s)|ds is uniformly continuous for any bounded
solution z(t) of ( ) on R4 holds. Assume that the condition (A) holds.
Then we see that

t t
/0 U(ll)(s,rz:(s))+d5 and /0 U('])(S,T(s))_d,s

are uniformly continuous for any bounded solution z(¢) of (1) on Ry,
since Uty (1,2(1)) 1+ = ([2())4 < o' (8)] and Ul (£, 2(1)) = (()]")-
< |2'(t)]. Hence Theorem 2.1 improves Theorem A.
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REMARK 2.4. Consider the scalar equation

a'(t) = —a(t)z(t) + b(t) /t-h A(s)z(s)ds (1.1)

where a,b,A: Ry — R are continuous and a(t) > 0 for all ¢ > 0.

From Theorem A we see that one of the sufficient conditions ensuring
the uniform asymptotic stability of the zero solution of (1.1) is that the
functions

8

/O/a(S)ds and [: lb(s)l(/s IA(w)|du)ds

—h

are uniformly continuous on R, since one of the sufficient conditions
must satisfy the condition (iii) in Theorem A.

To apply Theorem 2.1 to the equation (1.1) we consider U (¢, z(t)) =
lz(t)]. Then we have

U(Il.l)(tvm(f)) = |z(t)|

< —olb)la(t) + 0] [ IN)lalo)lds

<o) [ A la(s)lds

and
Uyt ()4 < [b(t)] - IA(s)]|z(s)|ds.

If z(t) is a bounded solution of (1.1) and |z(¢)| < M for some M > 0,
then we have

U(ll.l)("vﬂ”(’f))wL < M|b(t)| /t—h |A(s)!ds.

Now we note that the condition that jot b(s)I(J._, IA(w)|du)ds is uni-
formly continuous on R, implies that fOf U(’l_l)(s, «:(8))4 is uniformly
continuous on R,. Therefore, the strong condition that fot a(s)ds is
uniformly continuous on Ry is redundant under Theorem 2.1. For ad-

ditional sufficient conditions ensuring the uniform asymptotic stability
of the zero solution of (1.1) see [5, Theorem 5.1] and [7, Example 3.4].
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3. Uniform Boundedness and Uniform Ultimate Bounded-
ness for Functional Differential Equations with Unbounded
Delay

It is well known that for a functional differential equation with un-
bounded delay which is sufficiently well posed in a certain phase space,
existence of a periodic solution follows directly if solutions are uni-
formly bounded and uniformly ultimately bounded with respect to this
phase space. Thus the properties of uniform boundedness and uniform
ultimate boundedness frequently emerge as central. The purpose of this
section is to develop conditions ensuring such boundedness properties
for solutions of unbounded delay functional differential equations.

In this section we consider a system of the functional differential
equations with unbounded delay

(2) ' (t) = Ft,z(s);a < s < 1), t>0

where —oo < a < 0 (note that o could be —-x), F is a function
determined by t and the value of z(s) for @ < s <{ t and taking values
in R™.

For a tg > 0 and a bounded continuous function ¢ : [a,#)] — R"
(denote [, to] by (=00, tg] if & = —oc), the solution of (2), denoted by
z(t,tp, ¢), is a continuous function satisfying (2) on an interval [tg, to +
B) for some 3 > 0 with x(¢, 1o, @) = ¢(t) for all o < t < ty. We assume
that F' satisfies appropriate conditions to guarantee the existence and
uniqueness of solutions (cf. Burton[l] or Driver[4]).

Let C(t) denote the function space with ¢ € C'(¢) if ¢ : [o,t] — R"
is continuous and bounded. For ¢ € C(t) we define its norm as follows:

lell = Nl = sup |¢(8)|
a<f<t

Further, for any H > 0 and tg > 0, let Cy(to) be the subset of C(to)
such that ¢ € C(tp) and ||¢|| = ||o|/l*"! < H.

A Liapunov functional is a continuous function V (¢, z(-)) : R, x
C(t) — Ry whose derivative along a solution z(t) of (2) satisfies some
specific relation. The derivative of a Liapunov functional V(t,z(-))
along a solution z(t) of (2) may be defined in several equivalent ways.
If V is differentiable, the natural derivative is obtained using the chain
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rule. Then V(5 (t,(-)) denotes the derivative of functional V with
respect to (2) defined by

Vg (t,2()) = limsup{V (t + 6, 2(-)) — V(1, 2())} /6.

6—0+

DEFINITION 3.1. The solutions of (2) are uniformly bounded (U.B.)
if for each By > 0 there is a By > O such that [tp € Ry, ¢ € Cp, (ty),t >
to] imply that |x(¢,to, ¢)| < Ba.

DEFINITION 3.2. The solutions of (2) are uniformly ultimately boun-
ded (U.U.B.) with bound B if for each B3 > 0 thereisa T = T(B3) > 0
such that [to € Ry, ¢ € Cp,(tg),t > to+T] imply that |z(t, o, ¢)| < B.

THEOREM 3.1. Let M >0, and let V(t,¢(-)) : Ry x C(t) — [0, c0)
be continuous and locally Lipschitz in ¢. Suppuse that there exist
wedges Wi, Wa, W3, Wy, Wy and continuous functionals D(t,¢(-)), E(t
() : Ry x C(t) — [0, 00) such that

b

(i) Will$(n]) < V(t.6() < Wa(D(t, 6(-)).
(i) Vipy(t,2()) < ~Wa(E(t,2()) + M,

(iii) D(t,6(-)) < Wa(llo|l), and

(iv) Dit,x(-)) < Ws(E(t, x(-)))

for any t € Ry and any solution x(t) of (2). Then solutions of (2) are
U.B. and U.U.B.

Proof. Let By > 0, ¢ € C(ty) with ||¢|| < B; be given and let
z(t) = x(t, 1o, ) be a solution of (2). Integrate

Vit 2(-)) < —Wi(E(t,z())) + M

from t; to to with #; < #5. Then we have

Og/QWHE@mH»%

t1

< V(tl,.r(-)) — V(fg’l’()) + M(?‘,Q — tl).
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Now, consider v(s) = V(s,z(-)) on any interval [ty, L} for any L >
to+ M. Since v(s) is continuous, it has a maximum at some £ € [to, L.
Suppose t < ty + M then

v(t) < v(t) < w(te) + M(F —to) < Wao Wy(By) + M?
for any t € [tg, L], and thus

2(t)] < W H{Wa o Wa(B)) + M?} = 8

for any t € [to,L]. If t € [to + M, L], then V(3 (t) > 0 and hence
E(t,z(-)) < W5 '(M). Thus we have

Wi (lz(t)]) < v(t) < v(f) < Wa(D(F, 2()))
< Wa o Ws(E(t, 2(-))) < Wa o Wy 0 Wy (M)

and
j2(t)] S W[ o Wa o Ws o Wi (M) = 6,

for any t € [tp, L]. Therefore,
|z(t)] < max{By, B} = B
for any t € [to, L]. Since L is arbitrary, |z(t)] < 8 = B(B,) for any
t > tp. Thus solutions of (2) are uniformly bounded.
For the U.U.B., let 7 > 0 be given and find 8 = 6(n) > 0 with § > n

such that [ty > 0,]¢]| < n] imply that |z(t,t9, )] < # by U.B. Let
U=W;'(2M). Then, if

E(t,z() > Wy (2M),
we have
Viy(te() < —Wa(E(t2(-) + M < —2M + M < 0.
Now we note that

0 < V(ta()) < Wa(D(t,2()) < Wa(Wa(ll]|'*)) < (Ws 0 W4)(6)
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for any ¢ > t9. That is, V(#,z(-)) is nonnegative and bounded on R x
C(t). Now, we can choose a sufficiently large integer N = N(n) such
that for any interval [t,# + NM] with t > t, there is some f € (t, 1+
MN) with E(f,z(-)) < U. Consider the intervals

I =[to. to+MN]|, I, = [to+MN. tog+2NM],.. . I; = [to+(i—1)NM,
to+iNM],... and select ¢; € I, such that v(t;) is the maximum on ;.
In case t; = to + (i — 1)NM with E(¢;,z(-)) > U then by choice of N,
there is a first t; € [to + (1 — 1)N M, ¢y + iN M] such that
E(t;,x)) =U.

Now, instead of the above choice for I;, in this case we pick

I =[tity + INM]
and let

v(t;) = max v(s).
sel;

Therefore, in any case we have
Et,z()<U, 1=1,2,3,...
Now, consider the intervals
Ly =[ta—M,ts], Lz=][ts— M ts),... L, = [ti — M, t],...

For each ¢ = 2,3.4, ... we have two cases.
Case 1) v(t;) + 1 > v(s) for all s € L;.
Case 2) v(t;) + 1 < v(s;) for some s; € L;.

Note that in case 2, s; ¢ I, since v(¢;) is the maximum on [;. If
there is no gap between I,_, and I;, then s; € I,_;. If there is a gap
and s; € [to + (i — 1)NM, 1], then we have E(t,t(-)) > U and thus
Uy (1) < 0on [t + (i — 1)N M, 1;]. Hence

v(tio1) > v(to+ (i = 1)NM) > v(s;) > (t;) + 1.
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In either case we have
v(ty) + 1 < v(ti_)

since v(f;—1) is the maximum on J;_;. By the boundedness of v(t),
there is an integer N* > 0 such that case 2 holds on no more than
N* = N*(n) consecutive intervals L;. Thus, on some L; with j <
N* = N*(n) we have

v(tj) +1>wv(s) forall selL;=1[t — Mt
Now we note that

v(t;) < Wa(D(t;,2(-))) < Wa o Ws5(U)

and
v(t) Sv(t) + 1< WooWs(U)+1 forall te€L;.

Thus we try to show that

v(t) S (WaoWs)(U)+1=D forany t>t¢;.
To see this, let ¢, be the first ¢ > ¢, with v(¢,) = D. Then

Vig)(tp) = 0
and
0lty) < Wa(Dl(ty. 2())) < Wy 0 Ws(E(ty, 2(-))) < Wy o Wa(U),
which is a contradiction. Hence, for ¢t >ty + N*NM, we have
Wi(Je()]) < o(t) < D

and

lz(t)] < Wi Y(D).

Thus solutions of (2) are uniformly ultimately bounded. Hence we
complete the proof.
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EXAMPLE 3.1. Consider the following scalar differential equation

't

:r'(t):—a(t)m(t)Jra/ et~ s)x(s)ds+ f(1), £>0,  (21)

0

where a,c, f : [0,00) — (—o00,00) are continuous, a(t) > 0 for ¢t > 0,

a > 0 is a constant. Suppose
[oZu)

(1) / le(v)|dv < ¢* < oo for some ¢* > 0 ; / le(v)|dv < Ke(t)]
0

t

for some K > 0, and/ le(v)| dv € L0, 00),
t

(ii) there exist some constants 8 > 0 and v > 0 such that a(t)—pBc* >+,
a— 4+ BK(a(t)— pe*) <0, |f(#)] < M < oo for some M > 0. Then
the solutions of (2.1) are U.B. and U.U.B.

Proof. We consider the following Liapunov functional

Vit e(-)) f|+ﬁ// c(u — s)| du|p(s)| ds
t,o()

= D(
= E(t, ¢(-))

Then we have
D(t,¢(-)) = E(t,¢("))

< loll +5||¢H/Ot /too le(u — s)| duds
< ol + BL|4l|

for some L with 0 < L < oo and

Vet z()) £ —alt)]e(t)| + a/ le(t = )| lx(s/| ds + | £(t)]

+,j/ clu—t) dulz(t [—B/ le(t — s)||z(s)| ds
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< (alt)+ 8 (0] + (o= ) [ lelt = )kt ds + 1700
= (—alt) + B {B(t, ( ﬁé / le(u — )| du|a(s)| ds)
+a=9) [ lett - o))l ds + 1566)
< (alt) + 5e)B (1) + 8K alt) = ) [ Jtt = )5 s

+<a~m/ lo(t — )] [2(s)| ds + | £(8)]
< (=a(t) + B¢ )E(t,2() + |£(7)]
< —9B(tz(-) + M.

That is, all conditions in Theorem 3.1 are satisfied. Therefore, the
solutions of (2.1) are U.B. and U.U.B.

REMARK 3.1. We could specify a(t), ¢(t), f(¢) and « to satisfy the
assumptions in the previous example. For instance, if a(t) > 2 and
f(t) is a bounded continuous for on Ry with ¢(#) = e™% and a = 1,
then

1) Sy le(v)dv = [ e dv = 5 ST le(v) dv = 272 < Lle(t)]
oo oo 1
and thus ¢* = £, K = % more over, / le(v)|dvds = / 5(3_25 ds =
0 0

= < oo,

(i1) there exists 8 = 3 such that

a(t) — Bc* = a(t) —

l\DIC»«
l\DI»-—l

and

(;)|:—2+§<o.

a— 3+ BK(a(t) — ) < ~—3+g 1

Therefore, the solutions of (2.1) are U.B. and U.U.B.
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REMARK 3.2. Zhang has obtained some result about the uniform
boundedness and the uniform ultimate boundedness for a functional
differential equations with unbounded delay [10, Theorem 1] and ap-
plied his result for the equation (2.1) to study such boundedness prop-
erties of solutions of (2.1). In his application the function f(t) in (2.1)
has a strong restriction as follows :

/00 |f(s)|(exp /S n(u)du)ds < M < oo
Jo 0

for some measurable function n(t) > 0 on [0, o).

Also our new independent result [Theorem 3.1] can be applied to
the equation (2.1) to study such boundedness properties of solutions of
(2.1). In our application the function f(#) in (2.1) may have a flexible
restriction as follows:

If(t) <M < oo for all t e [0.00).
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