• Title/Summary/Keyword: spline regression

Search Result 67, Processing Time 0.022 seconds

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2015
  • We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Comparison of machine learning techniques to predict compressive strength of concrete

  • Dutta, Susom;Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.463-470
    • /
    • 2018
  • In the present study, soft computing i.e., machine learning techniques and regression models algorithms have earned much importance for the prediction of the various parameters in different fields of science and engineering. This paper depicts that how regression models can be implemented for the prediction of compressive strength of concrete. Three models are taken into consideration for this; they are Gaussian Process for Regression (GPR), Multi Adaptive Regression Spline (MARS) and Minimax Probability Machine Regression (MPMR). Contents of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate and age in days have been taken as inputs and compressive strength as output for GPR, MARS and MPMR models. A comparatively large set of data including 1030 normalized previously published results which were obtained from experiments were utilized. Here, a comparison is made between the results obtained from all the above mentioned models and the model which provides the best fit is established. The experimental results manifest that proposed models are robust for determination of compressive strength of concrete.

A Penalized Spline Based Method for Detecting the DNA Copy Number Alteration in an Array-CGH Experiment

  • Kim, Byung-Soo;Kim, Sang-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.115-127
    • /
    • 2009
  • The purpose of statistical analyses of array-CGH experiment data is to divide the whole genome into regions of equal copy number, to quantify the copy number in each region and finally to evaluate its significance of being different from two. Several statistical procedures have been proposed which include the circular binary segmentation, and a Gaussian based local regression for detecting break points (GLAD) by estimating a piecewise constant function. We propose in this note a penalized spline regression and its simultaneous confidence band(SCB) approach to evaluate the statistical significance of regions of genetic gain/loss. The region of which the simultaneous confidence band stays above 0 or below 0 can be considered as a region of genetic gain or loss. We compare the performance of the SCB procedure with GLAD and hidden Markov model approaches through a simulation study in which the data were generated from AR(1) and AR(2) models to reflect spatial dependence of the array-CGH data in addition to the independence model. We found that the SCB method is more sensitive in detecting the low level copy number alterations.

Mathcad program as a useful tool for the teaching and studying the sport biomechanics (운동역학의 교육과 연구용 도구로서 Mathcad의 유용성)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.301-311
    • /
    • 2004
  • The purpose of this study was to verify the usefulness of the Mathcad program as a tool for the studying and teaching the sport biomechanics. A projectile motion was analyzed because it is the one of the most popular motion in sports activities. A 3 dimensional CG data for the high jump bar clear phase was used to calculate the initial velocity vector of the CG. Linear regression function and other functions such as cubic spline and derivative of Mathcad were used to calculate this vector. Finally, the approach angle to the bar and peak jump height was calculated. Programming in Mathcad was relatively easy compare to traditional computer language such as Fortran and C, because of the unique documentation method of Mathcad. Additionally the 2 and 3 dimensional graph function was very easy and useful to describe the mechanical data. If the use of Mathcad program is more popular in the field of sport biomechanics, it could greatly contribute to overcome the limit of research caused by the lack of proper programming ability.

Credit Scoring Using Splines (스플라인을 이용한 신용 평점화)

  • Koo Ja-Yong;Choi Daewoo;Choi Min-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.543-553
    • /
    • 2005
  • Linear logistic regression is one of the most widely used method for credit scoring in credit risk management. This paper deals with credit scoring using splines based on Logistic regression. Linear splines and an automatic basis selection algorithm are adopted. The final model is an example of the generalized additive model. A simulation using a real data set is used to illustrate the performance of the spline method.

A study on selection of tensor spline models (텐서 스플라인 모형 선택에 관한 연구)

  • 구자용
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.181-192
    • /
    • 1992
  • We consider the estimation of the regression surface in generalized linear models based on tensor-product B-splines in a data-dependent way. Our approach is to use maximum likelihood method to estimate the regression function by a function from a space of tensor-product B-splines that have a finite number of knots and are linear in the tails. The knots are placed at selected order statistics of each coordinate of the sample data. The number of knots is determined by minimizing a variant of AIC. A numerical example is used to illustrate the performance of the tensor spline estimates.

  • PDF

On-Board Orbit Propagator and Orbit Data Compression for Lunar Explorer using B-spline

  • Lee, Junghyun;Choi, Sujin;Ko, Kwanghee
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.240-252
    • /
    • 2016
  • In this paper, an on-board orbit propagator and compressing trajectory method based on B-spline for a lunar explorer are proposed. An explorer should recognize its own orbit for a successful mission operation. Generally, orbit determination is periodically performed at the ground station, and the computed orbit information is subsequently uploaded to the explorer, which would generate a heavy workload for the ground station and the explorer. A high-performance computer at the ground station is employed to determine the orbit required for the explorer in the parking orbit of Earth. The method not only reduces the workload of the ground station and the explorer, but also increases the orbital prediction accuracy. Then, the data was compressed into coefficients within a given tolerance using B-spline. The compressed data is then transmitted to the explorer efficiently. The data compression is maximized using the proposed methods. The methods are compared with a fifth order polynomial regression method. The results show that the proposed method has the potential for expansion to various deep space probes.

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.

Semiparametric Bayesian estimation under functional measurement error model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.379-385
    • /
    • 2010
  • This paper considers Bayesian approach to modeling a flexible regression function under functional measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under functional measurement error model without semiparametric component.