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A Study on Selection of Tensor Spline Modelsl)

Ja-Yong Koo2

ABSTRACT

We consider the estimation of the regression surface in generalized linear
models based on tensor-product B-splines in a data—dependent way. Our
approach is to use maximum likelihood method to estimate the regression
function by a function from a space of tensor-product B-splines that have
a finite number of knots and are linear in the tails. The knots are placed
at selected order statistics of each coordinate of the sample data. The
number of knots is determined by minimizing a variant of AIC. A
numerical example is used to illustrate the performance of the tensor spline
estimates.

1. Introduction

Let Y be a response variable whose distribution depends on the values
of a vector of covariates x=(x1,,xq) and let n=f(x) denote a parameter

defined in terms of this distribution. If n is the mean of Y, f is the usual
regression function. Suppose instead that Y takes on only the values 0
and 1 and that n is the logit of the probability that Y=1, where logit(n) =
log(n/(1-x)). Then f is the logistic function.

Nelder and Wedderburn (1972) introduced generalized linear models
(GLMs) including the above two examples. In GLMs we assume a
response variable Y for which the likelihood can be written in the form

1(8;y) ={y8-b(8) }/a(e) +c(y, ¢) (1.1)

where 6 is the canonical parameter and a(¢) is the scale parameter. The
mean u is related to covariates x=(xi,...,Xq) via the link function g such
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that n = g(u) = f(x). The GLMs assume that the regression surface n is
linear in covariates, i.e n=2.B;jx; and the parameters B; are estimated using

the maximum likelihood method if appropriate distributional assumption is
made; otherwise the procedure is justified on the basis of quasi-likelihood.
However if the functional form of the dependence of predictor m on the
covariates is uncertain, it is important to have some methods available to
estimate the regression surface f(x) nonparametrically.

Koo and Lee(1992) studied tensor-product B-splines for GLMs and
compared some previously proposed nonparametric alternatives, such as
generalized additive models of Hastie and Tibshirani(1986), penalized
likelihood alternative of O'Sullivan, et. al.(1986) and MARS of Friedman
(1991).

In this paper, we attempt to combine tensor-product B-spline method
for GLMs by Koo and Lee(1992) and Smith's(1982) automated knot
selection procedure to estimate the regression surfaces n= f(x) in GLMs.
The tensor-product spline estimate of regression surface f(x) can be
obtained by directly maximizing the log likelihood over the space of the
tensor-product splines. This method is particularly suited to the analysis
of larger data sets (say n>50 data points) as is multivariate smoothing
splines of O'Sullivan, et. al. (1986). From the simulation study we have
found that knots remains where there is high local curvature and knots
are deleted if there is no such features, which means that tensor spline
estimates with knot deletion algorithm has the local adaptivity.

2. Tensor spline estimates in GLMs

The spline is an attractive tool for nonparametric function estimation. A
spline of degree q is a piecewise g-th degree polynomial, perhaps subject
to some smoothness constraints at the knots(boundaries between
consecutive pieces). Commonly employed are piecewise constants (q=0),
linear splines (q=1), quadratic splines (q=2) and, especially, cubic splines
(q=3). In practice twice continuously differentiable cubic splines are
particularly attractive since modest discontinuities in the third derivative
cannot be detected visually. It has been suggested that the spline
functions should be restricted linear at each tail. Fuller(1969) proposed
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such linear restrictions in the context of extrapolating a time series trend.
See also Stone and Koo(1986). If we adopt cubic splines restricted to
have each tail linear, the splines satisfy the natural boundary condition
that their higher derivatives other than first derivative vanish. Even when
the domains of covariates are unbounded, we recommend the use of such
splines.

For the simplicity of presentation, we consider GLMs with bivariate
covariate. Given N;j knots for each covariate x; and j=1,2, let S; be the
space of cubic splines of argument x; with linear constraint. Then S; is a
Nj-dimensional vector space whose basis {Bjx:1< k <N;} can be constructed
starting from either a truncated power basis or a B-spline basis [see de
Boor(1978)]. The element of the bivariate tensor-product B-spline space
T with linear constraint is a tensor product of S1 and S: whose elements
can be represented as

>, 2.85B1,j(x1)B2i(x2) .

1]

The tensor-product spline basis for T, Ax(x) = Bui(xi)Bz,(xz), is
represented by the product of basis of each component and hence the
dimension of T is given by J=N;:N; It has a major computational
advantage in that the properties of B-splines in one dimension carry over
to the bivariate tensor—product B-splines. See Schumaker(1981) for the
property of tensor-product B-splines.

Now let (X;Y:) for i=1,~,n be independently and identically distributed
random variables, where X;i=(XiXiz). Suppose that the conditional
distribution of Y; given Xi=xi belongs to the GLM family of distributions
but the form of the regression surface mi=f(xi;,xi2z) is unknown. Since we
do not restrict the functional form of f, the choice of link function is not
critical and thus we assume the canonical link 6=7n. Given the number and
location of knots, we approximate the regression surface f by a
tensor—product spline s(x;8)= 2BxAx(x) in T. Then the log-likelihood is

proportional to

1(8) = 2 {s(xuB)yi-b(s(x:B)) Vals), (2.1)
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where  xj=(xi,Xiz). The tensor spline regression surface estimator

F(x)=XFcAx(x) can be obtained by directly maximizing the

log-likelihood (2.1). To this end we use the Newton-Raphson method
which is equivalent to an iteratively reweighted regression procedure. For
the log-likelihood (2.1) the Fisher scoring method is equivalent to the
Newton-Raphson.  Since the likelihood function !(B) is concave in B
provided var(Y) >0, the existence and uniqueness of MLE of B is obvious.
For details see Koo and Lee(1992). Programs developed by de Boor(1978)
are used with slight modification to implement this procedure.

3. Stepwise knot deletion

In order to implement tensor—product splines, the rules for selecting the
number and location of knots for each covariate must be considered.
Choosing the number of knots is very important problem: it is comparable
to choosing a bandwidth in kernel regression estimation or smoothing
parameter in penalized likelihood method of O'Sullivan, et. al. (1986). Too
many knots leads to a noisy estimate; too few knots gives an estimate
that is overly smoothed and thereby missing essential details. The
problem of knot placement is also important, since many knots are needed
where there is high local curvature of f and few knots may be enough
where the fluctuation of f is mild. An algorithm achieving these two
goals is this [see also Smith(1982)] : start out with a larger number of
knots and then remove those knots that appear to be unessential for the
given data.

The following lemma details the linear combination of the bivariate
tensor-product B-spline which are used to test the importance of
breakpoints.

Ni: N,
Lemma, Let s(- ;B)=ZiklejkB1,j(X1)Bz,k(xz) be a bivariate tensor-product
j=1k=

spline in T, The absence of an interior breakpoint ¢ in the function

s(';B) in x, direction occurs if and only if the contrasts
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Teu(BF(¢)-BI(&*))
J

for p=0,1,2,3 and k=1,-,N2 all equal zero. Here B{L’-’(ﬁ‘) and
Big)(6+) are respectively the left- and right-hand limit of
3°B,y/ ax8 at &, ’

Proof. When we consider s(;B) as a function of x: alone, it is a
polynomial. Thus the absence of an interior breakpoint ¢ in x; direction
means that the polynomial pieces on either side of ¢ are the same, ie.,
they agree in function value and all derivatives. Since the derivatives
with respect to x: beyond the second are identically zero, it is necessary
and sufficient to require equal function values and p-th derivative values
for p=1,2,3 from which

ZIZpa(B(E)-BiP (2} Bax(x2)=0 for all x2.  (3.1)

Since {Bzx(x2), k=1, Nz} are linearly independent, (3.1) implies the
coefficients ;Bjk{Bgﬁ)(i')—Bfﬁ)(ﬁ*)} for k=1, N2 all equal zero. This

completes the proof of Lemma.

When ¢ is a simple knot and g is twice continuously differeniable, the
absence of ¢ in X1 direction occurs if the contrasts

?ﬁ]hl (B9 (¢7)-B{¥(¢*)} equal to zero for k=1, Na

The estimates (Bx) can be obtained by the maximum likelihood method
as described in Section 2, and let l“(li) be the inverse of the infomation
matrix. Let R({) be a Nz x J matrix such that the k—-th element of
R(&)B is

;ejk{B{?i’(t')—B%’(t*)},
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where J=Ni-<Nz. Note that the condition in the above Lemma is

equivalent to R({)B=0. By the above Lemma, we can use a test statistics
(R(E) B){R(EIN(BIR(E)'} 'R(&)B/N,

for the hypothesis R(¢)B=0, i.e., the absence of an interior breakpoint ¢ in
the function s(;B) in xi direction. This test statistics is proposed from

the heuristic point of view by assuming that # is approximately normal

with mean B and covariance matrix T'($). But the distributional property of
this statistic has not been shown.

Consider tjxy, 1 < k < Nj, j=1,2, as being non-permanent initial knots
that may be deleted and consider stepwise knot deletion among the
non-permanent initial knots. We start the knot deletion procedure with as
many knots as the computing time permits. A simple example of initial
knot placement is the rule that puts down N; knots along the x;-axis as
closely as possible to equispaced order statistics of j—th coordinate. See
Kooperberg and Stone(1990) for a more complicated rule for knot
placement. Also we might be able to estimate the location of knots, which
method is not used here because of its computing time. At any step we
delete that knot having the smallest value of

(R(t;x) B){R(t;)T (B)R(50) '} 'R (t;)B.
In this manner, we arrive at a sequence of models indexed by (mim3);
the (m1mz)-th model has (Ni-mi)(Nz-m;) free parameters. Let In
denote the log-likelihood function for the m=(mimz)})-th model evaluated at
the maximum -likelihood estimate for that model. Let

AIC om=-2lm+a(N1-M)) - (Nz-m3)

be the Akaike Information Criteria with parameter penalty « for the m-th
model. Since the traditional value of a«=2 often leads to spurious models,
Kooperberg and Stone(1990) suggested «=3 and Schwarz(1978)
recommended a=logn. We choose the model corresponding to that value
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m of m that minimizes AIC3n. Here is a flowchart for stepwise knot
deletion algorithm.

(1) Place as many knots as the computing time permits.
(2) Delete knots with the minimum test statistics.
(3) Choose the tensor spline model with minimum AIC3m.

Remark. If we use a criterion with large «, it is better to have a small
number of knots so that the estimated regression surface becomes
smoother. The smoothing operation prevents unnecessary fluctuations of
the surface estimator but may, of course, lose fine structure, especially
where there is high local curvature; as ever, due care is necessary in
determining the penalty parameter «. A reason of using AIC instead of
say, Cross—Validation which is asymptotically equivalent to AIC is that
AIC is easier to use, since the maximized log-likelihood is obtained by
product. Furthermore, at each deletion step we have to find the estimate

B by an iterative algorithm which prevent us from using a time

consuming criteria such as cross—validation.

Example. For each i=1,..,n, suppose that given X;=x;, the random
variable Y; has the Bernoulli distribution with parameter

a(x)=Pr(Yi=1 | X=x)=fi{x)/(fi (x)+f2 (x)), (3.2)

where
f1(x)=exp{ - (x:*+x:%)/2}
and
f2(x) =exp{ - (x2+1.5)%/2}exp{ - (x1-2.5)%/2} +exp{ - (x1+2.5)%/2})/2.

Then the logistic regression surface is given by f(x) = log[n(x)/{1-=(x)}].
The tensor spline estimates f can be obtained by the Newton-Raphson
method as in Section 2. The estimate of =(x) can also be obtained as
exp( f )/(1+exp( f)). Villalobos and Wahba (1987) have used the same
function for their simulation study. For this example, the wvalues of
random variables X; and X: are generated from uniform distribution with
range [-4,4] using the IMSL subroutine GGUBS. Figures (a) and (b) give
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the perspective plot and contour plot of the true probability =(x). Figure
(c) and (d) give the perspective plot and contour plot of the tensor spline
estimate based on the random sample of size n=200 with knot deletion
algorithm. These plots are done by commands 'persp' and 'contour' in
S-plus; see Becker et al. (1988). We use the simple rule of initial knot
placement putting down N;=5 knots along the xj—axis to equispaced order
statistics of j—th coordinate. Presumable we can use a criteria such as AIC
for choosing the number of initial knots, which is currently under study
theoretically. However, in practice the problem of choosing initial knots
doesn't seem crucial since we have only to use sufficiently many knots.
Remaining knots are denoted by tick marks on contour plot of estimated
surfaces.
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4. Discussion

In this paper, we illustrate that the stepwise knot deletion is easily
implemented for modeling the shape of regression surfaces for complicated
data with bivariate covariate, such as those with binomial responses.
When the number d of covariates is greater than 2, the dimension J of the
space of tensor product splines is given by the product of the dimension
of splines of each component, i.e. J=Ni"N4, which grows rapidly as d
increases. If the number of covariates is large, the adaptive tensor spline
method given in this paper requires a large amount of data and computing
time. By restricting the functional form of the regression surface to the
hierarchical model of the form with k small

f(x)=fo+ 2filxi)+ Tfiy(xi,%;) + - + Zf ip-ixin, =, Xi),

we can avoid such dimensionality problem. However, an obvious
drawback of such hierarchical model with k<d is that they cannot estimate
f itself, i.e. there remains a model bias. Given a modern workstation
environment with fast computation, interactive graphics and hardcopy
capability, the low-dimensional hierarchical tensor splines, especially
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models having interaction with k=2 which are estimated by bivariate
splines, are a promising tool in exploratory statistics.
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