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Abstract
We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression

model with area level covariate subject to measurement error. Consideration is given to radial basis functions for
the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors
in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement
error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian
framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo
methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on
model adequacy criteria; in addition, analysis is conducted based on real data.

Keywords: Hierarchical Bayesian, nested error regression, penalized spline, radial basis, semi-
parametric, small areas, structural measurement

1. Introduction

Sample surveys are designed to provide estimates of totals and means of items of interest for large
subpopulations (or domains). These estimates are “direct” because they use only domain-specific data
with domain sample sizes large enough to support reliable direct “design-based” estimates. However,
it is seldom possible to procure a large enough sample size to support direct estimates for small local
areas such as counties, and school districts. The term “small area” to denote any domain for which
direct estimates of adequate precision cannot be produced due to a small domain-specific sample size.
It is often necessary to employ “indirect” estimates for small areas that can increase the “effective”
domain sample size by “borrowing strength” from related areas through linking models and using
some auxiliary data associated with the small areas. A comprehensive account of model-based small
area estimation is given by Rao (2003).

Census and administrative data are often taken for auxiliary data in small area estimation with the
assumption that auxiliary data are available for all areas and are measured without error. However,
sometimes we can use auxiliary data from another survey and in this case the auxiliary data may be
measured with error. This measurements error complicates the statistical analysis and this problem
is commonly called measurement error problem (Fuller, 1987). This paper considers the situation in
which auxiliary data are available for use in small area estimation, but where auxiliary data may be
measured with error.
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Semiparametric regression methods have not been used in small area estimation contexts until
recently. This was mainly due to methodological difficulties in combining different smoothing tech-
niques with estimation tools generally used in small area estimation. The pioneering contribution was
due to work by Opsomer et al. (2008) that combined small area random effects with a smooth non-
parametrically specified trend using penalized splines. Bhadra et al. (2013) considered a Bayesian
semiparametric modeling procedure that used penalized splines to estimate the median household
income for all of the United States.

In our previous model (Hwang and Kim, 2010), we developed a Bayesian semiparametric model
to deal with the small area problem with measurement errors. We considered penalized splines for
non-linear pattern that uses truncated polynomial basis functions (TPBF) with knots of equally spaced
sample quantiles under a structural measurement error model. It follows from Hwang and Kim (2010)
that the semiparametric model was superior to the model without nonparametric component (Ghosh
et al., 2006).

This paper studies a Bayesian semiparametric model with radial basis functions (RBF) under a
structural measurement error model for the small area problem with measurement errors. TPBF are
not always numerically stable when the number of knots is large and the smoothing parameter is close
to zero. Instead of TPBF, B-splines and RBF can deal with this problem (Ruppert et al., 2003). To fit
our model and estimate parameters, we have conducted a hierarchical Bayesian (HB) approach with
a Markov Chain Monte Carlo (MCMC) methodology that uses a Gibbs sampling and Metropolis-
Hastings (M-H) algorithm.

We begin with a brief overview of the model specification and our notations in Section 2. In
Section 3, we prove the propriety of the posterior and established the MCMC implementation of the
proposed hierarchical Bayes procedure. In Section 4, we exhibit the performance of the proposed
model based on simulation studies. We have checked the convergence and model adequacy using a
potential scale reduction factor (PSRF) and the posterior predictive p-value (Meng, 1994); in addition,
we also used root mean squared errors to compare models. We conduct the analysis based on real data
in Section 5 and Section 6 discusses possible extensions of our modeling.

2. Model Specification and Notations

We consider a nested error regression model setup to estimate small area means originally considered
by Battese et al. (1988). Suppose there are m strata and each strata consists of the known population
size Ni. Let (yi j, Xi j) denote the observed response and covariate of the jth unit in the ith stratum
( j = 1, . . . ,Ni; i = 1, . . . ,m), respectively. The basis model can be expressed as

yi j = f (xi) + ui + ei j, (2.1)

where ui and ei j are the random effects and sampling errors with independent and identically dis-
tributed (i.i.d.) normal random variables, respectively. Here f (xi) is a smoothing function of xi re-
flecting the unknown response-covariate relationship; in addition, we use penalized splines with RBF.
RBF is defined as

1, x, . . . , xp−1, |x − τ1|2p−1, . . . , |x − τK |2p−1,

where | · | is the function of absolute value. Here K is the number of knots and we called this as the
tuning parameter in our model. And τ = (τ1, . . . , τK)T is the vector of knot locations on a grid equally
spaced sample quantiles of covariate xi (τ1 < · · · < τK) . In our paper we consider p = 1 case, then
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we can rewrite (2.1) as:

yi j = b0 + b1xi +

K∑
k=1

|xi − τk | + ui + ei j.

Our superpopulation model with structural measurement error covariates is assumed as:

yi j = xT
i b + zT

i γ + ui + ei j (2.2)
= θi + ei j;

Xi j = xi + ηi j,

where xi = (1, xi)T , z = (|xi − τ1|, . . . , |xi − τK |)T and ηi j is the measurement error with i.i.d. normal
distribution. We consider structural measurement error model, so let xi is a normal random vari-
able. Here b = (b0, b1)T and γ = (γ1, . . . , γK)T are the vector of regression and spline coefficients,
respectively. Specifically, θi(= xT

i b + zT
i γ + ui) is the small area means that we want to estimate.

Finally, we assumed that xi, ui, ei j and ηi j are mutually independent with xi ∼ N(µ, σ2
x), ui ∼ N(0, σ2

u),
ei j ∼ N(0, σ2

e) and ηi j ∼ N(0, σ2
η), respectively.

3. Hierarchical Bayesian Estimation Procedure

3.1. Hierarchical Bayesian framework

To fit the model and estimate parameters based on sample (ni is drawn from the ith stratum and∑m
i=1 ni = nt), we conduct a hierarchical Bayesian framework based on (2.2):

Stage 1. yi j = θi + ei j ( j = 1, . . . , ni; i = 1, . . . ,m)

Stage 2. θi = xT
i b + zT

i γ + ui (i = 1, . . . ,m)

Stage 3. Xi j = xi + ηi j ( j = 1, . . . , ni; i = 1, . . . ,m)

Stage 4. xi ∼ N(µx, σ
2
x).

Stage 5. γ ∼ N(0, σ2
γI).

Stage 6. b0, b1, µx, σ2
e , σ2

u, σ2
x, σ2

η and σ2
γ are mutually independent with b0, b1 and µx i.i.d. uniform

(−∞,∞); (σ2
e)−1 ∼ G(ae, be), (σ2

u)−1 ∼ G(au, bu), (σ2
η)
−1 ∼ G(aη, bη), (σ2

γ)
−1 ∼ G(aγ, bγ),

(σ2
x)−1 ∼ G(ax, bx), where G(α, β) denotes a gamma distribution shape parameter α and rate

parameter β having the expression f (x) ∝ xα−1 exp(−βx).

3.2. Propriety of the joint posterior

Before the implementation, we check the propriety of the joint posterior based on given a hierarchical
Bayesian framework since some priors are defined non-informative improper priors for regression
parameters b0 and b1, and mean parameter µx of xi. We can factorize the full posterior by conditional
independence properties as[

θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
η, σ

2
γ

∣∣∣ X, y]
∝

[
y
∣∣∣ θ, σ2

e

] [
θ
∣∣∣ b,γ, x, σ2

u,X
] [

X
∣∣∣ x, σ2

η

] [
x
∣∣∣ µx, σ

2
x

] [
γ
∣∣∣σ2
γ

]
[b]

[
µx

] [
σ2

x

] [
σ2

e

] [
σ2

u

] [
σ2
η

] [
σ2
γ

]
.
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Theorem 1. Assume that ae, au, ax, aη and aγ are all positive. Also, let au + m/2 − p/2 > 0, ax +

m/2 − 1 > 0 and aη + nt/2 − m/2 > 0 where p = rank(X∗) and X∗ = (xT
1 , . . . , x

T
m)T . Then the joint

posterior is proper.

Proof: The basic full parameter space is Ω = {θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
η, σ

2
γ}. Let

I =
∫
· · ·

∫
p(Ω

∣∣∣ y,X)dΩ

=

∫
· · ·

∫ [
Y

∣∣∣ θ, σ2
e

] [
θ
∣∣∣ b,γ, x, σ2

u,X
] [

X
∣∣∣ x, σ2

η

] [
x
∣∣∣ µx, σ

2
x

]
×

[
γ
∣∣∣σ2
γ

]
[b]

[
µx

] [
σ2

e

] [
σ2

u

] [
σ2
η

] [
σ2
γ

] [
σ2

x

]
dΩ. (3.1)

To show the propriety of the joint posterior, we have to prove that I ≤ M where M is any finite positive
constant.

First, integrating with respect to µx based on exp[−1/(2σ2
x)

∑m
i=1(xi − x̄)2] ≤ 1,

Iµx =

∫ [
x
∣∣∣ µx, σ

2
x

]
[µx]dµx

=
(
σ2

x

)− m
2

∫
exp

− 1
2σ2

x

m∑
i=1

(xi − µx)2

 dµx

=
(
σ2

x

)− m
2 exp

− 1
2σ2

x

m∑
i=1

(xi − x̄)2

 ∫ exp
[
− 1

2σ2
x
m (µx − x̄)2

]
dµx

≤ K1 ·
(
σ2

x

)− m−1
2 , (3.2)

where K1 is a constant. Second, integrating with respect to b with wT (I − PX∗)w ≥ 0,

Ib =
∫ [
θ
∣∣∣ b,γ, x, σ2

u,X
]

[b]db

=
(
σ2

u

)− m
2

∫
exp

− 1
2σ2

u

m∑
i=1

(
θi − xT

i b − zT
i γ

)2
 db

=
(
σ2

u

)− m
2

∫
exp

− 1
2σ2

u

m∑
i=1

(
wi − xT

i b
)2
 db

=
(
σ2

u

)− m
2

∫
exp

{
− 1

2σ2
u

wT (
I − PX∗

)
w
}

db
(
σ2

u

) 2
p
∣∣∣XT
∗X∗

∣∣∣− 1
2 (2π)

m
2

≤ K2 ·
(
σ2

u

)− (m−p)
2 ·

∣∣∣XT
∗X∗

∣∣∣− 1
2 , (3.3)

where K2 is a constant and PX∗ = X∗(XT
∗X∗)−1XT

∗ . Next, we integrate with respect to x based on the
method by Ghosh et al. (2006).

Ix =
∫ [

X|x, σ2
η

] ∣∣∣XT
∗X∗

∣∣∣− 1
2 dx

=
(
σ2
η

)− nt
2 exp

− 1
2σ2
η

m∑
i=1

ni∑
j=1

(
Xi j − X̄i

)2
 ∫ ∣∣∣XT

∗X∗
∣∣∣− 1

2 exp

− 1
2σ2
η

m∑
i=1

ni

(
X̄i − xi

)2
 dx
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≤ K
′

3 ·
(
σ2
η

)− nt−m
2 exp

− 1
2σ2
η

m∑
i=1

ni∑
j=1

(
Xi j − X̄i

)2


≤ K3 ·
(
σ2
η

)− nt−m
2 , (3.4)

where K
′

3 and K3 are some constants. Now, integrating with respect to σ2
u, σ2

x and σ2
η, using gamma

distribution,

Iσ2
u
=

∫ (
σ2

u

)− m−p
2

[
σ2

u

]
dσ2

u =

∫ (
σ2

u

)−(au+
m
2 −

p
2 )−1

exp
(
− bu

σ2
u

)
dσ2

u = K4, (3.5)

Iσ2
x
=

∫ (
σ2

x

)− m−1
2

[
σ2

x

]
dσ2

x =

∫ (
σ2

x

)−(ax+
m
2 −1)−1

exp
(
− bx

σ2
x

)
dσ2

x = K5, (3.6)

Iσ2
η
=

∫ (
σ2
η

)− nt−m
2

[
σ2
η

]
dσ2
η =

∫ (
σ2
η

)−(aη+
nt
2 −

m
2 )−1

exp
− bη
σ2
η

 dσ2
η = K6, (3.7)

where K4, K5 and K6 are some constants.
Combining (3.1)–(3.7), we have

I ≤ K1K2K3K4K5K6

∫
· · ·

∫ [
y
∣∣∣ θ, σ2

e

] [
γ
∣∣∣σ2
γ

] [
σ2

e

] [
σ2
γ

]
dΩ∗, (3.8)

whereΩ∗ = (Ω−µx− b− x−σ2
u−σ2

x−σ2
η). The posterior propriety is proved since the above integral

would be finite due to all components of the integrand in (3.8) having proper distributions. �

3.3. Full conditional distributions

To fit the model, we use MCMC integration technique for the implementation of the Bayesian proce-
dure. The M-H algorithm and Gibbs sampler are used because xi has not full conditional distribution
of closed form. We generate samples from the full conditional distribution of each θ, b,γ, x, µx, σ

2
x,

σ2
e , σ

2
u, σ

2
η and σ2

γ given the remaining parameters and the data. Gibbs sampling and M-H algorithm
are based on the following full conditional distributions:

(1)
[
θi

∣∣∣ b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η, X, y

] iid∼ N
[
(1 −Ci) ȳi +Ci

(
xT

i b + zT
i γ

)
,
σ2

e

ni
(1 −Ci)

]
,

where Ci = σ
2
e/(σ

2
e + niσ

2
u);

(2)
[
b
∣∣∣ θ,γ, x, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η, X, y

]
∼ N

[(
XT
∗ X∗

)−1
XT
∗w, σ2

u

(
XT
∗ X∗

)−1
]
,

where X∗ = (xT
1 , . . . , x

T
m)T , w = (w1, . . . ,wm)T , wi = θi − zT

i γ;

(3)
[
γ
∣∣∣ θ, b, x, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η, X, y

]
∼ N

[(
ZT
∗ Z∗
σ2

u
+ I
σ2
γ

)−1 ZT
∗
σ2

u
t,
(

ZT
∗ Z∗
σ2

u
+ I
σ2
γ

)−1]
,

where Z∗ =


|x1 − τ1 | · · · |x1 − τk |
.
.
.

. . .
.
.
.

|xm − τ1 | · · · |xm − τk |

, t = (t1, . . . , tm)T , ti = θi − xT
i b;
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(4)
[
xi

∣∣∣ θ, b,γ, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η, X, y

]
iid∼ exp

{
− 1

2σ2
u

(
θi − xT

i b − zT
i γ

)2
}

N
[(
σ−2
η ni + σ

−2
x

)−1 (
σ−2
η niX̄i + σ

−2
x µx

)
,
(
σ−2
η ni + σ

−2
x

)−1
]
;

(5)
[
µx

∣∣∣ θ, b,γ, x, σ2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η, X, y

]
∼ N

(
x̄,
σ2

x

m

)
;

(6)
[
σ−2

e

∣∣∣ θ, b,γ, x, µx, σ
2
x, σ

2
u, σ

2
γ, σ

2
η, X, y

]
∼ G

nt

2
+ ae,

1
2

m∑
i=1

ni∑
j=1

(
yi j − θi

)2
+ be

;
(7)

[
σ−2

u

∣∣∣ θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
γ, σ

2
η, X, y

]
∼ G

m
2
+ au,

1
2

m∑
i=1

(
θi − xT

i b − zT
i γ

)2
+ bu

;
(8)

[
σ−2
η

∣∣∣ θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
γ, σ

2
u, X, y

]
∼ G

nt

2
+ aη,

1
2

m∑
i=1

ni∑
j=1

(
Xi j − xi

)2
+ bη

;
(9)

[
σ−2
γ

∣∣∣ θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
η, X, y

]
∼ G

[
k
2
+ aγ,

1
2
γTγ + bγ

]
;

(10)
[
σ−2

x

∣∣∣ θ, b,γ, x, µx, σ
2
γ, σ

2
e , σ

2
u, σ

2
η, X, y

]
∼ G

m
2
+ ax,

1
2

m∑
i=1

(xi − µx)2 + bx

.
Our target of inference is to estimate {θi, i = 1, . . . ,m}. We run L(≥ 2) chains and 2d iterations

for each chain. To reduce the effect of the starting distributions, the first d iterations of each chain are
discarded and posterior summaries are calculated based on remaining d iterates. The HB estimators
for small area means is approximated by

E
(
θi

∣∣∣ X, y
)
= E

[
E

(
θi

∣∣∣ b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η, X, y

)]
(3.9)

≃
(
Ld−1

) L∑
l=1

2d∑
r=d+1

[(
1 −C(lr)

i

)
ȳi +C(lr)

i

(
xT (lr)

i b(lr) + zT (lr)
i γ(lr)

)]
,

and the posterior variance is estimated by

V
(
θi

∣∣∣ X, y
)
= E

[
V

(
θi

∣∣∣ b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η, X, y

)]
+ V

[
E

(
θi

∣∣∣ b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

)]
≃

(
Ld−1

) L∑
l=1

2d∑
r=d+1

σ2(lr)
e

ni

(
1 −C(lr)

i

)
+

(
Ld−1

) L∑
l=1

2d∑
r=d+1

[(
1 −C(lr)

i

)
ȳi +C(lr)

i

(
xT (lr)

i b(lr) + zT (lr)
i γ(lr)

)]2

− [
E(θi|X, y)

]2 .
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3.4. Convergence and model adequacy

We implement MCMC chains and monitored the convergence of the MCMC following general guide-
lines based on

√
R̂i (Gelman and Rubin, 1992) as the estimator of PSRF. This is given by

√
R̂i =

√
v̂ar(θi)

Wi
,

where v̂ar(θi) = (1−1/n)Wi+(1/n)Bi, Wi and Bi are within chain variance and between chain variance,
respectively. If

√
R̂i is close to 1 for all θi, it implies that the MCMC chains are convergent.

We calculate the posterior predictive p-value (Meng, 1994) to check the model adequacy. The
model is better supported by the data if the posterior predictive p-value (p) under the model is close
to 0.5.

p = (Ld)−1
L∑

l=1

2d∑
r=d+1

I
{
d
(
y(lr), θ(lr)

)
≥ d

(
yobs, θ

(lr)
)}
,

where I(·) is indicator function and d(y, θ) is the posterior discrepancy measure.

4. Simulation Studies

4.1. Computational details

The key feature of our implementation is the use of a semiparametric regression model with a RBF
instead of TPBF. To compare the performance between these two choices in the model, we consider
two functions (a slowly-varying smooth function and a function with a sharp peak).

Example 1. The true function is

f (x) = 5 + 3x + 4x2, x ∈ [−2, 2].

Example 2. The true function is

f (x) = sin(x) + 0.5 exp
(
−3x2

)
, x ∈ [−2, 2].

To take simulated data, at first, we sequentially generate xi (i = 1, . . . , 12) on [−2, 2] and then we
generate Xi j from xi with error ηi j ∼ N(0, 0.32). And θi are generated from xi with random effect
ui ∼ N(0, 0.12) for each function. Lastly, yi j are generated from θi with errors ei j ∼ N(0, 22) and
ei j ∼ N(0, 0.32) for each examples. We run three independent chains with runs of length 5,000
following burn-ins of 2,500. We set all 1.0 for all hyperparameters ae, be, au, bu, aη, bη, aη, bη, ax and
bx. Notice that the results are not sensitive to other values for the hyperparameters. We then take the
average of the squared differences of the estimators from the true mean (TM) over the 100 independent
simulations and take their squared roots to obtain the root mean squared errors (RMSE) to compare
the performance, where

RMSEi =

√√√√
100∑
k=1

(
θ(k)

i − θ̂
(k)
i

)2

100
.
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Table 1: Estimates of small area means for Example 1

i ni TM Mean with TPBF Mean with RBF
K = 1 K = 3 K = 5 K = 7 K = 1 K = 3 K = 5 K = 7

1 5 15.015 14.441 14.903 14.890 14.884 14.443 14.909 14.910 14.908
2 10 10.847 10.829 10.804 10.778 10.784 10.831 10.805 10.780 10.782
3 5 7.656 8.183 7.744 7.818 7.822 8.184 7.744 7.806 7.815
4 7 5.587 6.006 5.570 5.668 5.652 6.006 5.569 5.661 5.645
5 8 4.563 4.727 4.742 4.594 4.606 4.726 4.739 4.590 4.603
6 8 4.580 4.231 4.599 4.635 4.632 4.229 4.597 4.633 4.629
7 7 5.658 5.385 5.635 5.692 5.693 5.384 5.634 5.692 5.692
8 9 7.854 8.046 8.059 7.998 8.003 8.045 8.058 7.999 8.002
9 8 11.040 11.292 11.074 11.145 11.121 11.292 11.077 11.145 11.122
10 7 15.264 15.382 15.234 15.213 15.238 15.383 15.235 15.215 15.237
11 7 20.674 20.602 20.604 20.591 20.590 20.599 20.605 20.595 20.591
12 5 26.987 26.648 26.845 26.849 26.848 26.651 26.844 26.853 26.855

TM = true mean; TPBF = truncated polynomial basis functions; RBF = radial basis functions.

Table 2: RMSE for Example 1

i ni
RMSE with TPBF RMSE with RBF

K = 1 K = 3 K = 5 K = 7 K = 1 K = 3 K = 5 K = 7
1 5 1.022 0.881 0.920 0.942 1.023 0.871 0.910 0.918
2 10 0.548 0.560 0.580 0.579 0.548 0.560 0.580 0.580
3 5 0.828 0.708 0.678 0.700 0.828 0.708 0.684 0.702
4 7 0.731 0.593 0.602 0.590 0.730 0.592 0.600 0.590
5 8 0.504 0.454 0.445 0.444 0.505 0.453 0.444 0.444
6 8 0.612 0.441 0.446 0.448 0.612 0.442 0.445 0.449
7 7 0.701 0.574 0.561 0.559 0.702 0.576 0.561 0.559
8 9 0.656 0.617 0.609 0.621 0.656 0.620 0.609 0.621
9 8 0.704 0.659 0.665 0.662 0.704 0.657 0.665 0.662
10 7 0.754 0.767 0.771 0.762 0.754 0.771 0.772 0.766
11 7 0.774 0.784 0.793 0.802 0.773 0.784 0.795 0.804
12 5 0.887 0.853 0.863 0.859 0.885 0.853 0.858 0.856

Overall 8.721 7.891 7.933 7.968 8.720 7.887 7.923 7.951

RMSE = root mean square error; TPBF = truncated polynomial basis functions; RBF = radial basis functions.

4.2. Results

In all cases, R̂i ≃ 1 for all θi and p ≃ 0.5 for all simulation data and models. The detailed results are
reported in Tables 1–4. We report the sample sizes, TM and small area means estimates with two basis
functions as well as RMSE for each strata in Examples 1 and 2. In Example 1, we can see that the
model with RBF provides minimal improvement for all number of knots based on the overall RMSE;
however, the difference is only a third decimal point. The performance of the model with RBF is also
very similar with TPBF in Example 2. Additionally, the case of three knots has the smallest RMSE
for both basis functions. Figure 1 shows the one result (K = 3 case) for Examples 1 and 2 that the real
line (—–), dashed line (- - - -) , and dotted line (· · · · · · ) are the true function and the estimates with
TPBS and RBF, respectively.

5. Application

We conducted the analysis based on a real data. We used LANDSAT (Land observatory satellites)
data by Battese et al. (1988), hereafter BHF, for analysis. BHF was made available by Tobias Schoch
with the R package “rsae”. This data on the areas under corn and soybeans (reported in hectares) in the
37 segments of the 12 counties (north-central Iowa) were determined by USDA Statistical Reporting
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Table 3: Estimates of small area means for Example 2

i ni TM Mean with TPBF Mean with RBF
K = 1 K = 3 K = 5 K = 7 K = 1 K = 3 K = 5 K = 7

1 5 −0.895 −0.896 −0.883 −0.882 −0.881 −0.899 −0.877 −0.876 −0.874
2 10 −0.989 −1.000 −0.998 −0.999 −0.999 −1.001 −0.999 −1.000 −1.000
3 5 −0.941 −0.903 −0.911 −0.910 −0.912 −0.904 −0.918 −0.916 −0.918
4 7 −0.785 −0.766 −0.775 −0.774 −0.776 −0.766 −0.781 −0.780 −0.782
5 8 −0.520 −0.497 −0.502 −0.504 −0.504 −0.496 −0.504 −0.507 −0.507
6 8 0.568 0.550 0.549 0.548 0.548 0.552 0.552 0.551 0.552
7 7 0.924 0.890 0.892 0.893 0.894 0.893 0.898 0.899 0.900
8 9 0.517 0.541 0.545 0.546 0.547 0.542 0.548 0.549 0.549
9 8 0.787 0.790 0.796 0.796 0.797 0.791 0.797 0.797 0.797
10 7 0.957 0.940 0.943 0.943 0.943 0.939 0.943 0.943 0.943
11 7 0.993 0.983 0.982 0.982 0.982 0.982 0.981 0.981 0.981
12 5 0.897 0.931 0.924 0.922 0.921 0.928 0.920 0.918 0.918

TM = true mean; TPBF = truncated polynomial basis functions; RBF = radial basis functions.

Table 4: RMSE for Example 2

i ni
RMSE with TPBF RMSE with RBF

K = 1 K = 3 K = 5 K = 7 K = 1 K = 3 K = 5 K = 7
1 5 0.138 0.139 0.140 0.141 0.138 0.140 0.141 0.142
2 10 0.095 0.095 0.095 0.095 0.096 0.095 0.096 0.096
3 5 0.127 0.125 0.125 0.125 0.127 0.124 0.125 0.124
4 7 0.111 0.110 0.111 0.111 0.111 0.110 0.110 0.110
5 8 0.089 0.088 0.088 0.088 0.089 0.087 0.087 0.088
6 8 0.091 0.092 0.092 0.092 0.091 0.092 0.092 0.092
7 7 0.111 0.111 0.111 0.11 0.111 0.109 0.109 0.109
8 9 0.104 0.105 0.106 0.107 0.105 0.107 0.107 0.108
9 8 0.108 0.109 0.109 0.109 0.108 0.109 0.109 0.110
10 7 0.122 0.122 0.123 0.123 0.123 0.123 0.124 0.123
11 7 0.123 0.123 0.124 0.124 0.123 0.124 0.124 0.125
12 5 0.131 0.131 0.131 0.131 0.130 0.130 0.131 0.131

Overall 1.350 1.350 1.355 1.356 1.352 1.350 1.355 1.358

RMSE = root mean square error; TPBF = truncated polynomial basis functions; RBF = radial basis functions.
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Figure 1: For K = 3, True : —–, TPBF : - - - -, RBF : · · · · · · (TPBF = truncated polynomial basis functions;
RBF = radial basis functions).
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Figure 2: Scatter plot for areas under corn and corn pixels.

Table 5: Comparative data analyses for the LANDSAT data

Counties ni

TPBF RBF
K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.
Cerro Gordo 1 151.039 9.779 142.155 14.020 142.738 14.477 159.396 9.188 155.336 10.114 149.823 12.915

Hamilton 1 98.541 10.431 79.712 36.185 93.086 16.925 104.270 12.058 95.364 18.822 90.516 44.626
Worth 1 107.205 6.457 124.905 19.296 111.662 12.022 107.216 5.570 106.394 11.703 105.727 11.598

Humboldt 2 162.104 13.115 142.849 19.889 141.193 19.516 174.935 12.647 166.024 16.310 157.566 18.405
Franklin 3 135.980 6.150 136.407 11.033 139.456 10.942 138.206 5.754 139.369 7.814 140.704 10.729

Pocahontas 3 101.258 8.810 95.917 20.708 106.723 12.125 105.209 9.663 98.983 12.783 105.379 14.144
Winnebago 3 115.003 6.852 113.916 10.999 115.501 9.395 110.005 7.006 112.438 7.386 110.107 7.626

Wright 3 141.251 7.130 140.075 13.581 141.530 11.196 145.761 6.684 145.891 8.795 143.483 10.436
Webster 4 109.644 5.966 121.833 13.821 115.458 11.474 108.218 4.954 108.286 8.621 106.516 12.537
Hancock 5 113.533 6.372 115.107 8.265 114.080 7.645 109.478 6.068 111.308 6.278 109.121 6.961
Kossuth 5 123.925 5.763 120.675 8.176 121.354 9.577 121.904 5.806 123.941 6.233 123.089 6.105
Hardin 6 113.980 6.398 115.231 8.915 115.162 8.506 109.705 6.240 111.664 6.398 109.471 6.935

p-value 0.440 0.435 0.433 0.432 0.435 0.434

LANDSAT = land observatory satellites; TPBF = truncated polynomial basis functions; RBF = radial basis functions.

Service staff consists of 37 observations and 10 variables. This paper considers a prediction of areas
under corn that uses soya corn pixels only as a measurement error covariate. Figure 2 is the scatter
plot for areas under corn and corn pixels; consequently, we can view it is a little non-linear pattern.

We use same settings such as simulation studies. In our all case,
√

R̂ ≃ 1 for all θi and we report
the sample sizes, estimates, standard errors (s.e.) and the posterior predictive p-value for each case in
Table 5. The models with five knots TPBF and one knot RBF are better based on p-value and these
two models have similar model adequacy.

6. Concluding Remarks

We developed a semiparametric small area regression model with radial basis functions instead of
truncated polynomial basis functions under a structural measurement error model with knots on a grid
of equally spaced sample quantiles of the covariate. Numerical studies show that estimates of small
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area means seem similar to estimates based on truncated polynomial basis functions.
We can extend our model in various way. First, we considered normal outcome and covariate

with the measurement error in this paper. We develop generalized versions for the measurement
error problem in binomial or Poisson outcome cases. Second, we only considered measurement error
in covariate without measurement error in outcome variable. We can consider measurement error
in both covariate and outcome variables. Third, the results depend on the number and location of
knots. The selection of knots is always a subjective and tricky issue in these kinds of problems. The
complete underlying pattern may not be captured properly and result in a biased fit if too few or too
many knots are used; therefore, we will handle semiparametric Bayesian estimation with free knots
in future research.
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