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Abstract

This paper considers Bayesian approach to modeling a flexible regression function
under functional measurement error model. The regression function is modeled based
on semiparametric regression with penalized splines. Model fitting and parameter esti-
mation are carried out in a hierarchical Bayesian framework using Markov chain Monte
Carlo methodology. Their performances are compared with those of the estimators
under functional measurement error model without semiparametric component.

Keywords: Functional measurement error, Gibbs sampling, hierarchical Bayes, penal-
ized spline, semiparametric.

1. Introduction

Small area estimation has received considerable attention due to growing demand for
reliable small area statistics in both public and private sectors. Rao (2003) gives a com-
prehensive account of model-based methods that lead to efficient estimators of small area
means when the area-specific sample sizes are small.

Ghosh and Meeden (1986) considered EB estimation in a stratified finite population con-
text using a simple one-way ANOVA model. The results can be extended by inclusion of
covariates, and such procedures have been discussed in Ghosh and Meeden (1996). Of-
ten, however, it is not possible to obtain exact measurements of covariates. Ghosh and
Sinha (2004), abbreviated GS, assumed that the covariates are measured with error and
non-stochastic. This is the so-called functional measurement error model.

Semiparametric regression methods have not been used in small area estimation contexts
until recently. This was mainly due to methodological difficulties in combining the different
smoothing techniques with the estimation tools generally used in small area estimation. The
pioneering contribution in this regard is the work by Opsomer et al. (2008) in which they
combined small area random effects with a smooth.

The objective of this article is to develop efficient estimators of small area means by using
flexible smoothing of non-linear pattern with functional measurement error model. In doing
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so, we have modeled the small area means using penalized spline (Eilers and Marx, 1996)
which is a commonly used but powerful function estimation tool in nonparametric inference.
We have used truncated polynomial basis functions with varying degrees and number of
knots, although other types of basis functions like B-splines or thinplate splines can also
be used. For our semiparametric model, the analysis has been carried out using a hierar-
chical Bayesian (HB) approach. To sum up, we develop HB procedures for semiparametric
small area estimation under functional measurement error model. Following the general
convention, we have placed the knots on a grid of equally spaced sample quantiles of the
independent variables.

The model specification are given in Section 2. In Section 3, we have established the
propriety of the posteriors, and have discussed the Markov chain Monte Carlo (MCMC)
implementation of the proposed hierarchical Bayes procedure. Analysis of some real-life
data is undertaken in Section 4. Finally, we present a discussion of the results in Section 5.
The proofs of certain technical results are deferred to the Appendix.

2. Model specification

Suppose there are m strata labelled 1, · · · ,m and let Ni denote the known population
size for the i th stratum. We denote by yij the response of the j th unit in the i th
stratum (j = 1, · · · , Ni; i = 1, · · · ,m). A sample of size ni is drawn from the i th stratum
(
∑m
i=1 ni = nt). We consider the superpopulation model

yij = xT
i b+ zTi γ + ui + eij (j = 1, · · · , Ni; i = 1, · · · ,m), (2.1)

Xij = xi + ηij (j = 1, · · · , Ni; i = 1, · · · ,m). (2.2)

where xi = (1, xi)
T , zi = {(xi−τ1)+, · · · , (xi−τk)+}T , b = (b0, b1)T , and γ = (γ1, · · · , γk)T .

Here k is the number of knots. It is assumed that the ui, eij and ηij are mutually independent
with ui ∼ N(0, σ2

u), eij ∼ N(0, σ2
e) and ηij ∼ N(0, σ2

η). The available data consist of
(yij , Xij). An alternative way of expressing the same is

yij = θi + eij ; θi = xT
i b+ zTi γ + ui, (j = 1, · · · , Ni; i = 1, · · · ,m) (2.3)

Here the goal is to estimate the small area means θ.

3. Hierachical Bayesian inference

We consider a hierarchical Bayesian framework to predict the small area means θ =
(θ1, · · · , θm). Using expression (3), we begin with the following HB model:

Stage 1. yij = θi + eij (j = 1, · · · , ni; i = 1, · · · ,m) where eij
iid∼ N(0, σ2

e)

Stage 2. θi = xT
i b+ zTi γ + ui (i = 1, · · · ,m) where ui

iid∼ N(0, σ2
u)

Xij = xi + ηij (j = 1, · · · , ni; i = 1, · · · ,m) where ηij
iid∼ N(0, σ2

η)

Stage 3. γ ∼ N(0, σ2
γI)
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Stage 4. b0, b1,σ
2
e , σ

2
u, σ

2
η and σ2

γ are mutually independent with b0 and b1 i.i.d. uniform(−∞,∞);
(σ2
e)−1 ∼ G(ae, be), (σ2

u)−1 ∼ G(au, bu), (σ2
η)−1 ∼ G(aη, bη), (σ2

γ)−1 ∼ G(aγ , bγ), where
G(α, β) denotes an gamma distribution with shape parameter α and rate parameter β hav-
ing the expression f(x) ∝ xα−1 exp(−βx), x ≥ 0.

First check the propriety of the posterior under the given prior. By the conditional inde-
pendence properties, we can factorize the full posterior as[

θ, b,γ, σ2
e , σ

2
u, σ

2
η, σ

2
γ |X,y

]
(3.1)

∝
[
y|θ, σ2

e

] [
θ|b,γ,σ2

u,X
] [
X|σ2

η

] [
γ|σ2

γ

]
[b]
[
σ2
e

] [
σ2
u

] [
σ2
η

] [
σ2
γ

]
The proof of the propriety of the posterior is deferred to the Appendix.
The implementation of the Bayesian procedure is greatly facilitated by the Markov chain

Monte Carlo numerical integration technique, in particular the Gibbs sampler. This requires
generating samples from the full conditions of each of θ, b,γ, σ2

e , σ
2
u, σ

2
η and σ2

γ given the re-
maining parameters and the data. The Gibbs sampling analysis is based on the following
full conditional distribution:

(i)
[
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

] iid∼ N [(1− Ci) ȳi + Ci
(
xT
i b+ zTi γ

)
, σ2
e/ni (1− Ci)

]
where Ci = σ2

e/
(
σ2
e + niσ

2
u

)
(ii)

[
b|θ,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

]
∼ N

[(
XT

∗ X∗
)−1

XT
∗ w, σ

2
u

(
XT

∗ X∗
)−1
]

where X∗ =
(
xT
1 , · · · ,xT

m

)T
, w = (w1, · · · , wm)

T
, wi = θi − zTi γ

(iii)
[
γ|θ, b, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

]
∼ N

(ZT
∗ Z∗

σ2
u

+
I

σ2
γ

)−1
ZT

∗
σ2
u

t,

(
ZT

∗ Z∗

σ2
u

+
I

σ2
γ

)−1


where Z∗ =

 (x1 − τ1)+ · · · (x1 − τk)+
...

...
...

(xm − τ1)+ · · · (xm − τk)+

, t = (t1, · · · , tm)T , ti = θi − xT
i b

(iv)
[
σ−2
e |θ, b,γ,σ2

u, σ
2
γ , σ

2
η,X,y

]
∼ G

[
nt

2
+ ae,

1

2

∑m
i=1

∑ni

j=1 (yij − θi)2 + be

]

(v)
[
σ−2
u |θ, b,γ,σ2

e , σ
2
γ , σ

2
η,X,y

]
∼ G

[
m

2
+ au,

1

2

∑m
i=1

(
θi − xT

i b− zTi γ
)2

+ bu

]

(vi)
[
σ−2
η |θ, b,γ,σ2

e , σ
2
γ , σ

2
u,X,y

]
∼ G

[
nt

2
+ aη,

1

2

∑m
i=1

∑ni

j=1 (Xij − xi)2 + bη

]

(vii)
[
σ−2
γ |θ, b,γ,σ2

e , σ
2
u, σ

2
η,X,y

]
∼ G

[
k

2
+ aγ ,

1

2
γTγ + bγ

]
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We generate several sets of samples from the above full conditional distributions. After
burning out the first half, we use the averaging principle and take the average of the HB
estimates over all the remaining sets to obtain the final HB estimates. Also, we are replace
xi by X̄i = n−1

i

∑ni

j=1Xij . The HB estimators for small area means is approximated as:

E (θi|X,y) = E
[
E
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
(3.2)

'
(
d−1

) 2d∑
r=d+1

[(
1− C(r)

i

)
ȳi + C

(r)
i

(
xT
i b

(r) + zTi γ
(r)
)]

V (θi|X,y) = E
[
V
(
θi|b,γ, σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
+ V

[
E
(
θi|b,γ,σ2

e , σ
2
u, σ

2
γ , σ

2
η,X,y

)]
'
(
d−1

) 2d∑
r=1

(
σ
2(r)
e

ni
(1− C(r)

i )

)
(3.3)

+
(
d−1

) 2d∑
r=d+1

[
1− C(r)

i ȳi + C
(r)
i

(
xT
i b

(r) + zTi γ
(r)
)]2

− [E(θi|X,y)]
2
.

We use these results in next section for finding the posterior means and variances of the
θi’s ( i = 1, ...,m ).

4. Data analysis

We conducted a data analysis to compare the performance of the proposed HB estimators
and the HB estimators without semiparametric component. We use the data used by Battese
et al. (1988), hereafter BHF, for analysis. Knowledge of the area under different crops is
important to the US Department of Agriculture (USDA). Sample surveys have designed to
estimate crop areas for large regions, such as crop-reporting districts, individual states, and
the USA as a whole. Predicting crop areas for small areas such as counties has generally not
been attempted, due to a lack of availability of data from farm surveys for these areas. The
use of satellite data in association with farm-land survey observations has been the subject
of considerable research over the years. In their paper, BHF considered data for 12 counties
in Iowa, obtained from the 1978 June Enumerative Survey of the USDA as well as from the
satellite LANDSAT during the 1978 growing season. The purpose was to predict the area
under soya bean and corn in these counties. BHF developed a variance components model
for small area estimation and they provided analysis of the soya bean data (reported by
farmers) using two covariates, corn and soya bean (reported by satellite). The actual data
are provided in BHF (1988). We consider prediction of corn data using corn pixels only as
covariates.

We ran a Gibbs chain of size 10,000 with a burn-in of the first 5000. Using the equation
(5) and (6), we estimated of small area means and standard error. Figure 1 shows the
scatter plot of (yij , Xij). The results are reported in Table 4.1. It can be seen that the
proposal model with one knot is much better than the GS model in view of standard error.
Sometimes experience on the subject matter may be a guiding force in placing the knots the
“optimum” locations where a sharp change in the curve pattern can be expected.
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Figure 4.1 Scatter plot for BHF data

Table 4.1 The sample sizes, estimates and s.e. for the 12 counties

i ni
GS 1 knot 2 knots 3 knots

Est SE Est SE Est SE Est SE
1 1 150.01 9.80 151.08 9.82 151.23 10.98 150.87 10.08
2 1 85.09 11.91 94.54 12.00 90.71 14.87 93.77 13.23
3 1 101.83 8.55 106.14 7.41 104.72 7.79 104.83 8.44
4 2 159.57 11.65 161.10 12.21 162.46 14.53 160.55 13.28
5 3 136.95 7.58 137.37 6.91 135.97 9.48 137.44 8.14
6 3 90.57 10.58 98.38 9.92 95.33 11.52 97.60 10.75
7 3 116.98 6.60 116.89 5.67 118.06 6.36 116.12 7.42
8 3 141.24 8.00 141.87 7.54 141.02 9.13 141.72 8.33
9 4 106.72 7.72 109.83 6.10 108.98 7.36 108.99 7.05
10 5 114.11 6.63 114.81 5.38 115.48 6.27 113.94 6.79
11 5 125.28 6.57 125.12 5.66 125.38 7.07 124.32 7.04
12 6 114.95 6.52 115.49 5.27 116.24 6.14 114.74 6.74

5. Discussion

In this paper, we develop HB procedures for semiparametric small area estimation under
functional measurement error model with fixed knots. We noted that the result depends
on the number of knots as well as the location of knots. We will pursue further the semi-
parametric Bayesian estimation with random knots. Also, we will consider semiparametric
Bayesian estimators under structural measurement error models where the covariates are
measured with error and stochastic.
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Appendix A: Proof of posterior propriety

The basic parameter space is Ω =
{
θ,b,γ, σ2

e , σ
2
u, σ

2
η, σ

2
γ

}
. Let

I =

∫
· · ·
∫
p(Ω|y,X)dΩ (A.1)

=

∫
· · ·
∫ [

y|θ, σ2
e

] [
θ|b,γ,σ2

u,X
] [
X|σ2

η

] [
γ|σ2

γ

]
[b]
[
σ2
e

] [
σ2
u

] [
σ2
η

] [
σ2
γ

]
dΩ

We have to show that I ≤M where M is any finite positive constant.
First, integrating out with respect to b and using wT (I − PX∗)w ≥ 0,

Ib =

∫
[θ|b,γ, σ2

u,X][b]db (A.2)

= (σ2
u)

−
m

2

∫
exp

[
−

1

2σ2
u

m∑
i=1

(
θi − xT

i b− z
T
i γ
)2]

db

= (σ2
u)

−
m

2

∫
exp

[
−

1

2σ2
u

m∑
i=1

(
wi − xT

i b
)2]

db

= (σ2
u)

−
m

2

∫
exp

{
−

1

2σ2
u

wT (I − PX∗)w

}
db(σ2

u)

2

p|XT
∗ X∗|

−
1

2(2π)

m

2

≤ K1 · (σ2
u)

−
(m− p)

2

where PX∗ = X∗(X∗
TX∗)−1XT

∗ , rank(X∗) = p, and K1 is constant.
Next, we consider integration with respect to σ2

u,

Iσ2
u

=

∫
(σ2
u)

−
(m− p)

2
[
σ2
u

]
dσ2

u (A.3)

=

∫
(σ2
u)

−
(m− p)

2 (σ2
u)−au+1 exp

(
−bu/σ2

u

)
dσ2

u

=

∫
(σ2
u)

−(au+
m

2
−
p

2
)−1

exp
(
−bu/σ2

u

)
dσ2

u

= K2

where K2 is constant. Combining (A.2) and (A.3), we have

I ≤ K1K2

∫
· · ·
∫ [

y|θ, σ2
e

] [
X|σ2

η

] [
γ|σ2

γ

] [
σ2
e

] [
σ2
η

] [
σ2
γ

]
dΩ∗ (A.4)

where Ω∗ = (Ω−b− σ2
u). Since all the components of the integrand in (A.4) have proper

distribution, the above integral would be finite thus proving posterior propriety.
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