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Abstract
This paper considers a Bayesian approach to modeling a flexible regression function under structural mea-

surement error model. The regression function is modeled based on semiparametric regression with penalized
splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using
Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under
structural measurement error model without a semiparametric component.

Keywords: Gibbs sampling, hierarchical Bayes, Metropolis-Hastings, penalized spline, semipara-
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1. Introduction

Sample survey methodologies are widely used for collecting relevant information about a population
of interest. Apart from providing population level estimates, surveys are also designed to estimate var-
ious features of subpopulations or domains. Domains may be geographic areas like states or provinces
or county school districts or can even be identified by a particular social-demographic characteristic
like a specific age-gender group. Sometimes, the domain-specific sample size may be too small to
yield direct estimates of adequate precision. This led to the development of small area estimation pro-
cedures which specifically deal with the estimation of various features of small domains. Rao (2003)
gives a comprehensive account of model-based methods that lead to efficient estimators of small area
means when the area-specific sample sizes are small.

Ghosh and Meeden (1986) considered empirical Bayesian(EB) estimation in a stratified finite
population context using a simple one-way ANOVA model. The results can be extended by inclusion
of covariates, and such procedures have been discussed in Ghosh and Meeden (1996). Often, however,
it is not possible to obtain exact measurements of covariates. Ghosh et al. (2006), abbreviated GSK,
assumed that the covariates are measured with error and stochastic. This is the so-called structural
measurement error model.

Semiparametric regression methods have not been used in small area estimation contexts until
recently. This was mainly due to methodological difficulties in combining the different smoothing
techniques with the estimation tools generally used in small area estimation. The pioneering contri-
bution in this regard is the work by Opsomer et al. (2008) in which they combined small area random
effects with a smooth.

The objective of this article is to develop efficient estimators of small area means by using flexible
smoothing of non-linear pattern with structural measurement error model. In doing so, we have mod-
eled the small area means using penalized spline (Eilers and Marx, 1996) which is a commonly used
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but powerful function estimation tool in non-parametric inference. We have used truncated polyno-
mial basis functions with varying degrees and number of knots, although other types of basis functions
like B-splines or thinplate splines can also be used. For our semiparametric model, the analysis has
been carried out using a hierarchical Bayesian(HB) approach. Since we chose non-informative im-
proper priors for the regression parameters and one hyper parameter, propriety of the posterior has
been proved before proceeding with the computations. Markov chain Monte Carlo(MCMC) method-
ologies, specifically Gibbs sampling and Metropolis- Hastings(M-H) algorithm, has been used to
obtain the parameter estimates. We develop HB procedures for semiparametric small area estimation
under structural measurement error model. Following the general convention, we have placed the
knots on a grid of equally spaced sample quantiles of the independent variable.

The remaining sections are arranged as follows. The model specification are given in Section
2. In Section 3, we have established the propriety of the posteriors, and have discussed the MCMC
implementation of the proposed hierarchical Bayes procedure. We illustrate the performance of the
approach for a simulation study in Section 4. Finally, we present a discussion of the results in Section
5. The proofs of certain technical results are deferred to the Appendix.

2. Model Specification

Suppose there are m strata labelled 1, . . . ,m and let Ni denote the known population size for the ith
stratum. We denote by yi j the response and by Xi j the covariate of the jth unit in the ith stratum
( j = 1, . . . ,Ni; i = 1, . . . ,m). A sample of size ni is drawn from the ith stratum (

∑m
i=1 ni = nt).

The basic semiparametric model can be expressed as

yi j = f (xi) + ui + ei j, (2.1)

where f (xi) is an unspecified function of xi reflecting the unknown response-covariate relationship.
We approximate f (xi) using a P-spline and rewrite (2.1) as

yi j = b0 + b1xi + · · · + bpxp
i +

k∑
a=1

γa(xi − τa)+p + ui + ei j, (2.2)

where, for any number u, u+ is equal to u if u is positive and is equal to 0 otherwise. The above
spline model with degree p can adequately approximate any unspecified smooth function. Typically,
linear(p = 1) or quadratic(p = 2) splines serves most practical purposes since they ensure adequate
smoothness in the fitted curve.

For illustration, we consider p = 1 case with structural measurement errors. In this case, the
superpopulation model is assumed as follows:

yi j = b0 + b1xi +

k∑
a=1

γa(xi − τa)+ + ui + ei j (2.3)

= xT
i b + zT

i γ + ui + ei j

= θi + ei j ( j = 1, . . . ,Ni; i = 1, . . . ,m);
Xi j = xi + ηi j,

where θi = xT
i b + zT

i γ + ui is our target of inference. Here xi = (1, xi)T and zi = {(xi − τ1)+, . . . , (xi −
τk)+}T . And b = (b0, b1)T is the vector of regression coefficients, while γ = (γ1, . . . , γk)T is the
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vector of spline coefficients. Also, k is the number of knots and τ = (τ1, . . . , τk) is the vector of
knot location(τ1 < · · · < τk). It is assumed that the xi, ui, ei j and ηi j are mutually independent with
xi∼N(µx, σ

2
x), ui∼N(0, σ2

u), ei j∼N(0, σ2
e) and ηi j∼N(0, σ2

η). The available data consist of (yi j, Xi j).

3. Bayesian Inference

3.1. Hierarchical Bayesian framework

We consider a HB framework to predict the small area means θ = (θ1, . . . , θm). Using expression (2.3),
we begin with the following HB model:

Stage 1. yi j = θi + ei j ( j = 1, . . . , ni; i = 1, . . . ,m) where ei j are i.i.d. N(0, σ2
e).

Stage 2. θi = xT
i b + zT

i γ + ui (i = 1, . . . ,m) where ui are i.i.d. N(0, σ2
u).

Xi j = xi + ηi j ( j = 1, . . . , ni; i = 1, . . . ,m) where ηi j are i.i.d. N(0, σ2
η).

Stage 3. xi ∼ N(µx, σ
2
x).

Stage 4. γ ∼ N(0, σ2
γI).

Stage 5. b0, b1, µx, σ2
e , σ2

u, σ2
x, σ2

η and σ2
γ are mutually independent with b0, b1 and µx i.i.d. uniform

(−∞,∞); (σ2
e)−1 ∼ G(ae, be), (σ2

u)−1 ∼ G(au, bu), (σ2
η)
−1 ∼ G(aη, bη), (σ2

γ)−1 ∼ G(aγ, bγ),
(σ2

x)−1∼G(ax, bx) where G(α, β) denotes an gamma distribution shape parameter α and rate
parameter β having the expression f (x) ∝ xα−1 exp(−βx).

First check the propriety of the posterior under the given prior. By the conditional independence
properties, we can factorize the full posterior as[

θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
η, σ

2
γ|X, y

]
(3.1)

∝
[
y|θ, σ2

e

] [
θ|b,γ, x, σ2

u,X
] [

X|x, σ2
η

] [
x|µx, σ

2
x

] [
γ|σ2

γ

]
× [b]

[
µx

] [
σ2

x

] [
σ2

e

] [
σ2

u

] [
σ2
η

] [
σ2
γ

]
.

The proof of the propriety of the posterior is deferred to the appendix.
Our target of inference is {θi, i = 1, . . . ,m}. Since the marginal posterior distribution of θi is ana-

lytically intractable, high dimensional integration needs to be carried out in a theoretical framework.
However, this task can be easily accomplished in an MCMC framework by using Gibbs sampler and
M-H algorithm to sample from the full conditionals of θi and other relevant parameters. In imple-
menting the Gibbs sampler and M-H algorithm, we follow the recommendation of Gelman and Rubin
(1992) and run L(≥ 2) chains. For each chain, we run 2d iterations with starting points drawn from an
overdispersed distribution. To diminish the effects of the starting distributions, the first d iterations of
each chain are discarded and posterior summaries are calculated based on the rest of the d iterates.

3.2. Full conditional distribution and inference

The Gibbs sampling and M-H algorithm analysis are based on the following full conditional distribu-
tion:

(i)
[
θi

∣∣∣b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

] iid∼ N
[
(1 −Ci) ȳi +Ci

(
xT

i b + zT
i γ

)
,
σ2

e

ni
(1 −Ci)

]
,

where Ci = σ
2
e/

(
σ2

e + niσ
2
u

)
.
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(ii)
[
b
∣∣∣θ,γ, x, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

]
∼ N

[(
XT
∗X∗

)−1
XT
∗w, σ2

u

(
XT
∗X∗

)−1
]
,

where X∗ =
(
xT

1 , . . . , xT
m

)T
, w = (w1, . . . ,wm)T , wi = θi − zT

i γ.

(iii)
[
γ
∣∣∣θ, b, x, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

]
∼ N

ZT
∗Z∗
σ2

u
+

I
σ2
γ

−1 ZT
∗
σ2

u
t,

ZT
∗Z∗
σ2

u
+

I
σ2
γ

−1,
where Z∗ =


(x1 − τ1)+ · · · (x1 − τk)+

...
. . .

...
(xm − τ1)+ · · · (xm − τk)+

, t = (t1, . . . , tm)T , ti = θi − xT
i b.

(iv)
[
xi

∣∣∣θ, b,γ, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

]
.

iid∼ exp
{
− 1

2σ2
u

(
θi − xT

i b − zT
i γ

)2
}
×N

[(
σ−2
η ni + σ

−2
x

)−1 (
σ−2
η niX̄i + σ

−2
x µx

)
,
(
σ−2
η ni + σ

−2
x

)−1
]
.

(v)
[
µx

∣∣∣θ, b,γ, x, σ2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

]
∼ N

(
x̄,
σ2

x

m

)
.

(vi)
[
σ−2

e

∣∣∣θ, b,γ, x, µx, σ
2
x, σ

2
u, σ

2
γ, σ

2
η,X, y

]
∼ G

nt

2
+ ae,

1
2

m∑
i=1

ni∑
j=1

(
yi j − θi

)2
+ be

.
(vii)

[
σ−2

u

∣∣∣θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
γ, σ

2
η,X, y

]
∼ G

m
2
+ au,

1
2

m∑
i=1

(
θi − xT

i b − zT
i γ

)2
+ bu

.
(viii)

[
σ−2
η

∣∣∣θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
γ, σ

2
u,X, y

]
∼ G

nt

2
+ aη,

1
2

m∑
i=1

ni∑
j=1

(
Xi j − xi

)2
+ bη

.
(ix)

[
σ−2
γ

∣∣∣θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
η,X, y

]
∼ G

[
k
2
+ aγ,

1
2
γTγ + bγ

]
.

(x)
[
σ−2

x

∣∣∣θ, b,γ, x, µx, σ
2
γ, σ

2
e , σ

2
u, σ

2
η,X,Y

]
∼ G

m
2
+ ax,

1
2

m∑
i=1

(xi − µx)2 + bx

.
We may use the M-H algorithm in (iv). We generate several sets of these samples. After burning out
the first half, we use the averaging principle and take the average of the HB estimates over all the re-
maining sets to obtain the final HB estimate. The HB estimators for small area means is approximated
as:

E (θi|X, y) = E
[
E

(
θi|b,γ, x, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

)]
(3.2)

≃
(
Ld−1

) L∑
l=1

2d∑
r=d+1

[(
1 −C(lr)

i

)
ȳi +C(lr)

i

(
xT (lr)

i b(lr) + zT (lr)
i γ(lr)

)]
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and the posterior variance is estimated as:

V (θi|X, y) = E
[
V

(
θi|b,γ, x, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

)]
(3.3)

+ V
[
E

(
θi|b,γ, x, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ, σ

2
η,X, y

)]
≃

(
Ld−1

) L∑
l=1

2d∑
r=d+1

σ2(lr)
e

ni

(
1 −C(lr)

i

)
+

(
Ld−1

) L∑
l=1

2d∑
r=d+1

[
1 −C(lr)

i ȳi +C(lr)
i

(
xT (lr)

i b(lr) + zT (lr)
i γ(lr)

)]2 − [
E(θi|X, y)

]2 .

3.3. Convergence diagnostics and model adequacy

Gelman and Rubin (1992) suggested simulating multiple chains. They constructed a potential scale
reduction factor(PSRF), interpreted as the factor by which the estimated variance of θi could be re-
duced if the chain were simulated for more iterations. The estimator of PSRF

√
R̂i is calculated as

follows. √
R̂i =

√
v̂ar(θi)

Wi
, (i = 1, . . . ,m), (3.4)

where v̂ar(θi) = (1 − 1/n)Wi + (1/n)Bi, Wi is within chain variance, and Bi is between chain variance.
If

√
R̂i is close to 1 for all θi , it implies that the sampling is convergence.

The posterior predictive p-value is useful in model adequacy checking. The principle of poste-
rior predictive checking is that the realized results should look plausible under a posterior predictive
distribution. The posterior predictive p-value is computed by the expression

p = (Ld)−1
L∑

l=1

2d∑
r=d+1

I
{
d
(
y(lr), θ(lr)

)
≥ d

(
yobs, θ

(lr)
)}
, (3.5)

where I(·) is indicate function and d(y, θ) is the posterior discrepancy measure. If the p-value is an
extreme value(close to 0 or 1), we can conclude that the model does not fit well. On the other hand, if
the model fit the data well, the p-value is close to 0.5.

4. Numerical Studies

4.1. Simulation studies

We consider two functions as follows

(a) y = 5 + 3x + 4x2, x ∈ [−2, 2].

(b) y = 5 + cos(2x) + 2 exp(−16x2), x ∈ [−2, 2].

We conduct a simulation study to compare the performance of our model estimators in comparison
with the GSK estimators. Simulated data are created as follows: The xi (i = 1, . . . , 12) are generated
sequentially on [−2,2] and then Xi j are generated from xi with errors ηi j independent N(0, 0.12) in (a)
and N(0, 0.22) in (b). For each functions (a) and (b), θi are generated from xi with random effect ui
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Table 1: Means of example (a)

i ni TM GS mean(fixed) mean(random)
k = 3 k = 4 k = 5 k = 6 λ = 1 λ = 3 λ = 9

1 5 15.004 14.621 14.609 14.655 14.632 14.663 14.377 14.431 14.520
2 10 10.838 10.815 10.968 10.925 10.903 10.899 10.890 10.894 10.907
3 5 7.633 7.784 7.850 7.771 7.918 7.941 7.963 7.942 7.913
4 7 5.592 5.780 5.632 5.865 5.830 5.737 5.875 5.855 5.816
5 8 4.590 4.710 4.805 4.610 4.600 4.683 4.726 4.718 4.685
6 8 4.578 4.715 4.586 4.622 4.623 4.589 4.666 4.660 4.639
7 7 5.672 5.884 5.670 5.773 5.733 5.723 5.779 5.770 5.752
8 9 7.873 8.035 8.004 7.883 7.894 7.939 7.970 7.963 7.953
9 8 11.013 10.913 10.808 10.966 10.982 10.917 10.933 10.935 10.943
10 7 15.265 15.182 15.290 15.202 15.213 15.256 15.204 15.210 15.228
11 7 20.668 20.493 20.682 20.649 20.637 20.627 20.540 20.547 20.569
12 5 27.002 26.809 26.811 26.857 26.849 26.860 26.813 26.827 26.836

Table 2: RMSEs of example (a)

i ni RMSE(GS) RMSE(fixed) RMSE(random)
k = 3 k = 4 k = 5 k = 6 λ = 1 λ = 3 λ = 9

1 5 1.108 0.952 0.986 1.013 1.025 1.105 1.075 1.027
2 10 0.605 0.514 0.510 0.517 0.533 0.524 0.520 0.518
3 5 0.954 0.743 0.763 0.734 0.752 0.806 0.777 0.759
4 7 0.706 0.568 0.604 0.612 0.596 0.637 0.618 0.605
5 8 0.699 0.562 0.564 0.553 0.555 0.591 0.573 0.561
6 8 0.727 0.584 0.548 0.556 0.567 0.598 0.579 0.563
7 7 0.780 0.559 0.566 0.558 0.570 0.602 0.586 0.565
8 9 0.686 0.535 0.547 0.551 0.543 0.566 0.554 0.545
9 8 0.642 0.569 0.502 0.505 0.531 0.534 0.527 0.516
10 7 0.772 0.633 0.662 0.653 0.635 0.658 0.645 0.640
11 7 0.770 0.610 0.619 0.628 0.636 0.673 0.664 0.653
12 5 0.836 0.761 0.754 0.762 0.757 0.777 0.773 0.768

overall 9.284 7.589 7.626 7.641 7.699 8.071 7.893 7.720

independent N(0, 0.12). Lastly, yi j are generated from θi with errors ei j independent N(0, 22) in (a) and
N(0, 0.32) in (b). We draw 50 independent samples (yi j, Xi j). We set all 1.0 for all hyperparameters
ae, be, au, bu, aη, bη, aγ, bγ, ax and bx. Notice that the results are not sensitive to other values for those
hyperparameters.

4.2. Computational details and results

We implement and monitor the convergence of the MCMC following the general guidelines given in
Gelman and Rubin (1992). We run ten independent chains each with a sample size of 5,000 and a
burn-in sample of another 2,500. Using the equation (3.2), we estimate the small area means. In our
all case, R̂ ≃ 1 for all θi and p ≃ 0.5. Moreover, we take the average of the squared differences of the
estimators from the true means(TM) over the 50 simulations and take their squared roots to obtain the
root mean squared errors(RMSE).

RMSEi =

√√√
1
50

50∑
k=1

(
θ(k)

i − θ̂
(k)
i

)2
. (4.1)

In Table 1∼ 4, we report the sample sizes, the TM, GSK, proposal model estimates as well as RMSE
for the 12 strata in examples (a) and (b). It follows from the above tables that our estimates are doing
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Table 3: Means of example (b)

i ni TM GS mean(fixed) mean(random)
k = 3 k = 4 k = 5 k = 6 λ = 1 λ = 3 λ = 9

1 5 4.350 4.355 4.328 4.326 4.326 4.327 4.329 4.328 4.326
2 10 4.010 4.029 4.024 4.023 4.024 4.023 4.025 4.025 4.025
3 5 4.167 4.208 4.210 4.212 4.212 4.212 4.214 4.214 4.214
4 7 4.763 4.783 4.794 4.792 4.794 4.792 4.793 4.793 4.793
5 8 5.500 5.494 5.510 5.509 5.508 5.509 5.505 5.505 5.507
6 8 7.115 7.086 7.085 7.086 7.085 7.087 7.085 7.084 7.085
7 7 7.130 7.105 7.101 7.105 7.106 7.103 7.103 7.103 7.103
8 9 5.483 5.486 5.499 5.500 5.499 5.500 5.496 5.496 5.497
9 8 4.724 4.702 4.711 4.711 4.711 4.711 4.711 4.711 4.711
10 7 4.179 4.179 4.181 4.181 4.180 4.181 4.183 4.183 4.183
11 7 3.999 4.004 4.000 3.997 3.999 3.998 3.999 3.999 3.998
12 5 4.349 4.383 4.354 4.353 4.353 4.353 4.358 4.357 4.355

Table 4: RMSEs of example (b)

i ni RMSE(GS) RMSE(fixed) RMSE(random)
k = 3 k = 4 k = 5 k = 6 λ = 1 λ = 3 λ = 9

1 5 0.155 0.157 0.157 0.157 0.157 0.156 0.156 0.156
2 10 0.094 0.092 0.092 0.092 0.092 0.092 0.092 0.092
3 5 0.149 0.148 0.148 0.148 0.149 0.150 0.150 0.149
4 7 0.105 0.106 0.106 0.107 0.106 0.106 0.106 0.106
5 8 0.104 0.104 0.104 0.103 0.103 0.103 0.103 0.103
6 8 0.112 0.112 0.112 0.111 0.111 0.112 0.112 0.111
7 7 0.116 0.116 0.116 0.115 0.116 0.116 0.116 0.116
8 9 0.100 0.101 0.101 0.101 0.101 0.100 0.101 0.101
9 8 0.098 0.096 0.096 0.095 0.096 0.096 0.096 0.096

10 7 0.116 0.115 0.115 0.115 0.115 0.115 0.115 0.115
11 7 0.113 0.112 0.112 0.111 0.111 0.112 0.112 0.112
12 5 0.126 0.121 0.121 0.121 0.121 0.122 0.121 0.121

overall 11.389 1.380 1.380 1.376 1.379 1.380 1.380 1.379

better than the GSK estimates according to the RMSE criterion. Thus, based on our simulation, it
appears that the our method has better overall performance than the GSK estimates.

In Figure 1 and 2, we display the one case with k = 5. The real line(—–), dashed line(- - - -) and
dotted line(· · · · · · ) are the true functions, GSK estimates and proposal model estimates, respectively.
It can be seen from the above figures that the proposal model estimates are slightly superior to the
GSK estimates in view of the closeness to the true curve.

5. Discussion

In this paper, we have proposed HB procedures for semiparametric small area estimation under struc-
ture measurement error model with fixed knots and our estimates proved to be superior to the GSK
estimates. The main advantage of our modeling procedure is that it can be used for any possible pat-
terns in the response observations of small areas. Our model can be extended in various ways. (1)
We have used the truncated polynomial basis function but other types of bases like B-splines radial
or basis functions could also be used. (2) Although we have used a parametric normal distributional
assumption for the random state, a broader class of distributions like the Dirichlet process or Polya
trees may be tested. Lastly, we have noted that the result depends on the number and location of knots.
The selection of knots is always a subjective but tricky issue in these kind of problems. Sometimes
experience on the subject matter may be a guiding force in placing the knots in the “optimum” loca-
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Figure 1: Example (a), true curve: ——-, GSK: - - - -, Proposal: · · · · · ·
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Figure 2: Example (b), true curve: ——-, GSK: - - - -, Proposal:· · · · · ·

tions where a sharp change in the curve pattern can be expected. Too few or too many knots are used
the complete underlying pattern may not be captured properly, thus resulting in a biased fit. So, we
will pursue the semiparametric Bayesian estimation with random knots in future research.
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Appendix: Proof of Posterior Propriety

The basic parameter space is Ω = {θ, b,γ, x, µx, σ
2
x, σ

2
e , σ

2
u, σ

2
η, σ

2
γ}. Let

I =
∫
· · ·

∫
p
(
Ω

∣∣∣y,X)
dΩ (A.1)

=

∫
· · ·

∫ [
Y
∣∣∣θ, σ2

e

] [
θ
∣∣∣b,γ, x, σ2

u,X
] [

X
∣∣∣x, σ2

η

] [
x
∣∣∣µx, σ

2
x

]
×

[
γ
∣∣∣σ2

γ

]
[b]

[
µx

] [
σ2

e

] [
σ2

u

] [
σ2
η

] [
σ2
γ

] [
σ2

x

]
dΩ.

We have to show that I ≤ M where M is any finite positive constant.
First, integrating with respect to µx , and noting that exp[−1/(2σ2

x)
∑m

i=1(xi − x̄)2] ≤ 1 ,

Iµx =

∫ [
x
∣∣∣µx, σ

2
x

]
[µx]dµx (A.2)

=
(
σ2

x

)− m
2

∫
exp

− 1
2σ2

x

m∑
i=1

(xi − µx)2

 dµx

=
(
σ2

x

)− m
2 exp

− 1
2σ2

x

m∑
i=1

(xi − x̄)2

 ∫ exp
[
− 1

2σ2
x
m (µx − x̄)2

]
dµx

≤ K1 ·
(
σ2

x

)− m−1
2 ,

where K1 is a constant. Now integrating with respect to b and using wT (I − PX∗)w ≥ 0,

Ib =
∫ [
θ
∣∣∣b,γ, x, σ2

u,X
]

[b]db (A.3)

=
(
σ2

u

)− m
2

∫
exp

− 1
2σ2

u

m∑
i=1

(
θi − xT

i b − zT
i γ

)2
 db

=
(
σ2

u

)− m
2

∫
exp

− 1
2σ2

u

m∑
i=1

(
wi − xT

i b
)2
 db

=
(
σ2

u

)− m
2

∫
exp

{
− 1

2σ2
u

wT (
I − PX∗

)
w
}

db
(
σ2

u

) 2
p |XT

∗X∗|−
1
2 (2π)

m
2

≤ K2 ·
(
σ2

u

)− (m−p)
2 · |XT

∗X∗|−
1
2 ,

where PX∗ = X∗(XT
∗X∗)−1XT

∗ , rank(X∗) = p and K2 is a constant.
Next, we consider integration with respect to x. Let us refer to the appendix of Ghosh et al.

(2006).

Ix =
∫ [

X|x, σ2
η

] ∣∣∣XT
∗X∗

∣∣∣− 1
2 dx (A.4)

=
(
σ2
η

)− nt
2 exp

− 1
2σ2

η

m∑
i=1

ni∑
j=1

(
Xi j − X̄i

)2
 ∫ ∣∣∣XT

∗X∗
∣∣∣− 1

2 exp

− 1
2σ2

η

m∑
i=1

ni

(
X̄i − xi

)2
 dx
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≤ K′3 ·
(
σ2
η

)− nt−m
2 exp

− 1
2σ2

η

m∑
i=1

ni∑
j=1

(
Xi j − X̄i

)2


≤ K3 ·
(
σ2
η

)− nt−m
2 ,

where K′3 and K3 are some constants. Now, integrating with respect to σ2
u, σ2

x and σ2
η, using Gamma

distribution,

Iσ2
u
=

∫ (
σ2

u

)− (m−p)
2

[
σ2

u

]
dσ2

u =

∫ (
σ2

u

)−(au+
m
2 −

p
2 )−1

exp
(
− bu

σ2
u

)
dσ2

u = K4, (A.5)

Iσ2
x
=

∫ (
σ2

x

)− (m−1)
2

[
σ2

x

]
dσ2

x =

∫ (
σ2

x

)−(ax+
m
2 −1)−1

exp
(
− bx

σ2
x

)
dσ2

x = K5, (A.6)

Iσ2
η
=

∫ (
σ2
η

)− (nt−m)
2

[
σ2
η

]
dσ2

η =

∫ (
σ2
η

)−(aη+
nt
2 −

m
2 )−1

exp
− bη
σ2
η

 dσ2
η = K6, (A.7)

where K4, K5 and K6 are some constants.
Combining (A.1)∼(A.7), we have

I ≤ K1K2K3K4K5K6

∫
· · ·

∫ [
y|θ, σ2

e

] [
γ|σ2

γ

] [
σ2

e

] [
σ2
γ

]
dΩ∗, (A.8)

whereΩ∗ = (Ω− µx − b− x−σ2
u −σ2

x −σ2
η). Since all the components of the integrand in (A.8) have

proper distributions, the above integral would be finite thus proving posterior propriety.
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