• Title/Summary/Keyword: spin state

Search Result 337, Processing Time 0.025 seconds

COLLINEARITY AND SPIN FREEZING

  • Vincze, I.;Kemeny, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.343-350
    • /
    • 1995
  • An overview will be given on recent Mossbauer and magnetization investigation of the applied field dependence of the magnetic properties of typical systems without strong magnetic anisotropy and showing the absence of magnetic saturation in high fields (including iron-rich spin glass (amorphous $Fe_{93}Zr_{7}$, soft ferromagnets (amorphous $Fe_{88}Zr_{12}$, $Fe_{70}Ni_{20}Zr_{10}$ and $Fe_{88}B_{12}$) and pure Fe). The results emphasize that shape anisotropy due to surface irregularities causes misalignment between the magnetization and the applied field in the otherwise collinear magnetic structure.

  • PDF

Period changes in the Intermediate Polar MU Camelopardalis

  • Park, Jiwon;Yoon, Jho-Na;Kim, Yonggi;Andronov, I.L.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.89.1-89.1
    • /
    • 2015
  • Period changes found in the 10 years CCD BVR photometry data (2005 - 2014) of the Intermediate Polar MU Cam will be discussed. The timings of extrema of the data are determined and the new ephemeris for the spin period and orbital period have been calculated by using multi-periodic approximation as follows: BJD(orb)=2454085.46(19)+0.19664 $10(26){\cdot}E$ and BJD(spin)=2454085.50725(91)+0.013740942(13) ${\cdot}$ $E-1.51(10){\times}10^{-12}{\cdot}E^2$. The O-C diagram shows an increasing of the spin period as $P=-2.20(14){\cdot}10^{-12}s/s$. It is also found in MU Cam that the white dwarf's rotation seems to be switched from a state of spin-down to spin-up by the white dwarf's equilibrium spin period in 2005.

  • PDF

Effect of an Obstacle on the Bottom Surface of a Circular Cylinder on the Spin-up Flow (원통 용기 바닥의 장애물이 스핀업 유동에 미치는 영향)

  • Choi, Yoon-Hwan;Moon, Jong-Choon;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.676-681
    • /
    • 2001
  • In this paper, the spin-up from rest to a state of solid-body rotation in a circular container with a slender rectangular obstacle on the bottom wall is analysed experimentally. We use a PIV method for the evolution of the free-surface flow. Laboratory experiments have been carried out for a variety of the obstacle height h(0, 5, 10 [mm]) and the liquid depth H(25, 50, 75, 100 [mm]). It was found that the spin-up time is crucially dependent on the obstacle height T. In the case of T=10[mm] the spin-up time is considerably shorter then the other cases.

  • PDF

Fault Detection System Development for a Spin Coater Through Vibration Assessment (스핀코터의 진동 평가를 통한 이상 검출 시스템 개발)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.47-54
    • /
    • 2009
  • Spin coaters are the essential instruments in micro-fabrication processes, which apply uniform thin films to flat substrates. In this research, a spin coater diagnosis system is developed to detect the abnormal operation of TFT-LCD process in real time. To facilitate the real-time data acquisition and analysis, the circular-buffered continuous data transfer and the short-time Fourier transform are applied to the fault diagnosis system. To determine whether the system condition is normal or not, a steady-state detection algorithm and a frequency spectrum comparison algorithm using confidence interval are newly devised. Since abnormal condition of a spin coater is rarely encountered, algorithm is tested on a CD-ROM drive and the developed program is verified by a function generator. Actual threshold values for the fault detection are tuned in a spin coater in process.

Evidence of Spin Reorientation by Mössbauer Analysis

  • Myoung, Bo Ra;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.126-129
    • /
    • 2014
  • We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

Two-Dimensional Spin-Up in a Rectangle (직사각형 내부에서의 2차원 스핀업)

  • Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1805-1812
    • /
    • 1993
  • Two-dimensional spin-up in a rectangular domain is analysed by the numerical computation of the Navier-Stokes equations. The cells are in most cases generated by the vorticity developed near the uper and lower surfaces. Moreover, the movement and interaction of those vortices play a key role in establishing the quasi-steady state. The critical phenomena observed in the previous experiment turns out to be caused by the critical movement of the vortices.

VARIATIONAL PRINCIPLE FOR QUANTUM UNBOUNDED SPIN SYSTEMS

  • Choi, S.D.;Jo, S.G.;Kim, H.I.;Lee, H.H.;Yoo, H.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.579-592
    • /
    • 2000
  • We study the variational principle for quantum unbounded spin systems interacting via superstable and regular interactions. We show that the (weak) KMS state constructed via the thermodynamic limit of finite volume Green's functions satisfies the Gibbs variational equality.

  • PDF