Evidence of Spin Reorientation by Mössbauer Analysis

Bo Ra Myoung, Sam Jin Kim, and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

(Received 21 February 2014, Received in final form 23 April 2014, Accepted 28 April 2014)

We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a Mössbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by Mössbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The Mössbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, E_Q has anomalous two-points of temperature dependence of E_Q curve as freezing temperature, T_f = 11 K, and Néel temperature, T_N = 26 K. This suggests that there appears to be a slowly-fluctuating "spin gel" state between T_f and T_N , caused by non-paramagnetic spin state below T_N . This comes from charge re-distribution due to spin-orientation above T_f , and T_N , due to the changing E_Q at various temperatures. Isomer shift value (0.7 mm/s $\leq \delta \leq$ 0.9 mm/s) shows that the charge states are ferrous (Fe²⁺), for all temperature range. The Debye temperature for the octahedral site was found to be Θ_D = 260 K.

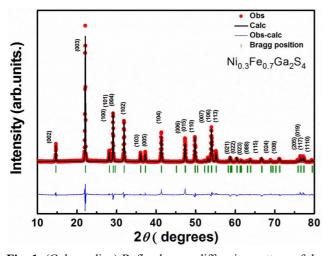
Keywords: mössbauer spectroscopy, spin reorientation, electric quadrupole splitting

1. Introduction

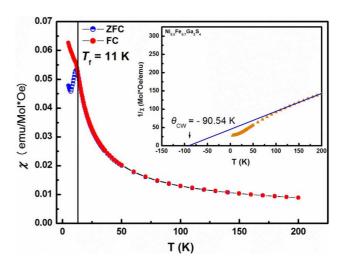
The chalcogenide materials have attracted interest for their various physical properties of colossal magnetoresistance [1], gigantic Kerr effect [2], orbital glass state [3], spin dimerization [4], and spin-frustration [5, 6]. The materials with triangular lattice for AGa_2S_4 , (A = Mn, Ni, Fe, Co, Zn), Gd₃Ga₅O₁₂, Fe₂OBO₃ and so on, have reported characteristic geometrical frustration phenomena. Their materials have non- conventional magnetic order, arising from the incommensurate spin structure, spin fluctuation, spin-flop, and spin liquid without spin solid below Néel temperature [7-9]. In particular, research interest has focused on triangular lattice antiferromagnet NiGa₂S₄, which has a low spin state of S = 1, despite geometrical frustration, spin-fluctuation, and the atomic short-range order in the ground state up to 0.35 K [5]. Meanwhile, it was reported that FeGa₂S₄ with geometrical frustration phenomena, like the crystal structure of NiGa₂S₄ has a high spin state of spin = 2 at low temperature [10]. Recently, NiGa₂S₄ and FeGa₂S₄ have magnetic transition with $T^* \cong 9$ and 30 K, with presence of spatial inhomogeneity from muon spin rotation and relaxation (μ SR) experiments [11]. This coincides almost with Néel temperature T_N of 11, and 33 K of NiGa₂S₄ and FeGa₂S₄, respectively, by Mössbauer spectroscopy [12-14]. In this paper, we describe crystallographic and magnetic properties of Ni_{0.3}Fe_{0.7}Ga₂S₄, when Fe is doped at 70 % in NiGa₂S₄ by using an X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a Mössbauer spectroscopy. Especially, we report evidence of spin reorientation of Ni_{0.3}Fe_{0.7}Ga₂S₄ by Mössbauer analysis.

2. Experimental Details

The polycrystalline sample of Ni_{0.3}Fe_{0.7}Ga₂S₄ was prepared by a standard solid-state reaction method in evacuated 10⁻⁷ torr quartz ampoules. In order to obtain homogeneous materials, it was necessary to grind the mixed powders of Fe (99.99%), Ni (99.99%), Ga (99.999%), and S (99.99%), and press the powder into pellet, before the annealing process in evacuated quartz ampoules. A single phase of Ni_{0.3}Fe_{0.7}Ga₂S₄ was obtained, by annealing at 1000°C with nitrogen gas in evacuated quartz


©The Korean Magnetics Society. All rights reserved. *Corresponding author: Tel: +82-2-910-4752

Fax: +82-2-910-5170, e-mail: cskim@kookmin.ac.kr


ampoules for ten days. The crystal structure of sample of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was analyzed, by using Philips X'Pert diffractometer with Cu $K\alpha$ radiation source. The magnetic properties were characterized by superconducting quantum interference device (SQUID) magnetometer. The Mössbauer spectra were recorded by conventional spectrometer of the electromechanical type, with a 57 Co source in a rhodium matrix. The obtained Mössbauer spectra were analyzed by a least-squares fitting program.

3. Results and Discussion

The XRD pattern of single-crystal Ni_{0.3}Fe_{0.7}Ga₂S₄ at room temperature was analyzed by Rietveld's refinement of the FullProf code, as shown in Fig. 1. The crystalline structure of Ni_{0.3}Fe_{0.7}Ga₂S₄ was a 2-dimension triangular lattice of space group P-3m1, and the lattice parameters were $a_0 = 3.657$ Å, and $c_0 = 12.058$ Å. The Bragg factor $R_{\rm B}$ and the structure factor $R_{\rm F}$ were less that 4%. The interlayer path $\theta_{Fe-S-Fe}$ (°) for Ni_{0.3}Fe_{0.7}Ga₂S₄ is 98.16°, and the lattice parameters of Ni_{0.3}Fe_{0.7}Ga₂S₄ are shown in Table 1. Also, we confirmed that the structure of Ni_{0.3}Fe_{0.7}Ga₂S₄ consists of a central Ni_{0.3}Fe_{0.7}S₂ layer of edge-sharing Ni_{0.3}Fe_{0.7}S₆ octahedral site, and top of the bottom sheets of GaS4 tetrahedral site. The layered structure is formed by four anion sulfur layers, which are stacked in the direction of the c-axis, as in distorted hexagonal structure.

Fig. 1. (Color online) Refined x-ray diffraction pattern of the $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at room temperature. The Bragg factors R_B and the structure factors R_F were under 4%.

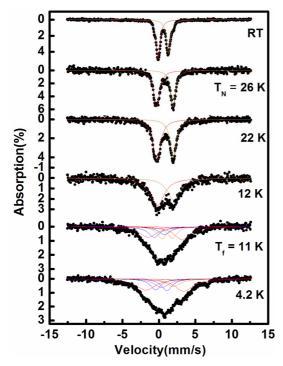

Fig. 2. (Color online) Temperature dependence of molar susceptibility χ of Ni_{0.3}Fe_{0.7}Ga₂S₄ in zero-field-cooled (open symbols) and field-cooled (solid symbols) magnetization, at magnetic fields under 100 Oe. Inset shows the inverse molar susceptibility $1/\chi$ in field-cooled (FC) magnetization, at magnetic fields under 5 T.

Fig. 2 presents the temperature dependences of zero-field-cooled (ZFC) and field-cooled (FC) molar susceptibility, in an external magnetic field of H=100 Oe, measured by SQUID magnetometer. The magnetic irreversibility appears below freezing temperature $T_{\rm f}=11.0$ K, as shown with two different temperature dependencies. This spin-freezing transition temperature, $T_{\rm f}$ coincides with the temperature of changing from 8-line into 2-line width of Mössbauer spectrum. From the inset of Fig. 2, showing the temperature dependence of inverse susceptibility χ^{-1} in field-cooled (FC) magnetization under 5T, we determined Curie–Weiss temperature for Ni_{0.3}Fe_{0.7}Ga₂S₄ to be $\theta_{\rm W}=-90.54$ K. Also, antiferromagnetic behavior is clearly indicated, and the frustration factor ($|\theta_{\rm W}|/T_{\rm N}$) is 8.23.

The Mössbauer spectra for $Ni_{0.3}Fe_{0.7}Ga_2S_4$ were obtained at various temperatures ranging from 4.2 to 300 K as shown in Fig. 3. The Mössbauer spectra show severely distorted 8-line shape from 4.2 K to $T_f = 11$ K due to the geometrical frustration effect, as spin-fluctuation, incommensurate spin structure, atomic short-range ordering, and liquid spin state. We analyzed the Mössbauer spectra by using the full Hamiltonian for the ^{57}Fe nucleus and considering both the magnetic dipole and the electric

Table 1. XRD refinement parameters of Ni_{0.3}Fe_{0.7}Ga₂S₄ at room temperature, for a *P-3m1*, 2-dimensional triangular lattice structure.

sample	<i>a</i> ₀ (Å)	$c_0(\text{Å})$	$V(Å^3)$	d _{Fe-Fe} (Å)	d _{Fe-S} (Å)	$ heta_{ ext{Fe-S-Fe}}$ (°)
Ni _{0.3} Fe _{0.7} Ga ₂ S ₄	3.657	12.058	3.657	3.657	2.420	98.16

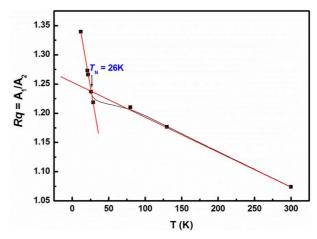
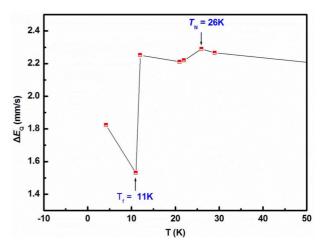


Fig. 3. (Color online) Mössbauer spectra for Ni_{0.3}Fe_{0.7}Ga₂S₄ at various temperatures.


quadrupole interactions. From the value of the isomer shift value (0.7 mm/s $\leq \delta \leq$ 0.9 mm/s) at all temperature range, we concluded that the Fe ion is ferrous (Fe²⁺). We determined that $T_{\rm f}$ is 11 K, due to the appearance of 2-line from 8-line width of Mössbauer spectrum, in accord with $T_{\rm f}$ from SQUID magnetometer. We decided on the small gap energy, $\Delta_{\rm l}=0.208$ meV for the doublet levels of ${}^5T_{\rm 2g}$ between ${}^5T_{\rm 2g}$ and ${}^5E_{\rm g}$ states on the ground state of 5D for Fe²⁺ ion based on crystal field energy theory from electric quadrupole splitting, $E_{\rm Q}=1.82$ mm/s at 4.2 K [15]. Fig. 4 shows the ratio of the intensities, $R_{\rm q}=A_{\rm l}/A_{\rm 2}$, between the Mössbauer absorption areas in the two electric quadrupole splitting in the temperature range from 12 to 300 K.

Then, we determined that Néel temperature, $T_{\rm N}$ is 26 K, since the meeting temperature of the slops is 26 K, when the slopes of $R_{\rm q}$ at lower and higher temperature are connected. The decreases of $R_{\rm q}$ from 1.34 to 1.07 with increasing temperature comes from the Goldanskii-Karyagin effect, which is caused by the asymmetric environment, extensive quadrupole splitting and anisotropic thermal vibrations [16].

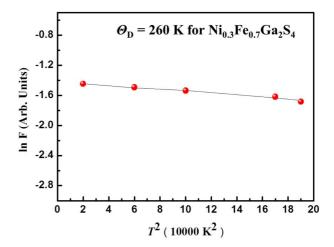

As shown in Fig. 5, electric quadrupole splitting, $E_{\rm Q}$ decreases at $T_{\rm f}$ with frozen disordered-spins around $T_{\rm f}$, as in spin-liquid material, and increases of $E_{\rm Q}$ above $T_{\rm f}$ shows charge re-distribution due to spin-orientation. However, there is no complete spin-orientation at $T_{\rm f}$ due to additional increases of $E_{\rm Q}$ at $T_{\rm N}$ with evidence of spin-

Fig. 4. (Color online) Ratio of the intensities of two lines, $R_q = A_1/A_2$, for Ni_{0.3}Fe_{0.7}Ga₂S₄ in the temperature range from 12 to 300 K for the Mössbauer spectra.

Fig. 5. (Color online) Temperature dependence of the electric quadrupole splitting for Ni_{0.3}Fe_{0.7}Ga₂S₄ from 12 to 300 K.

Fig. 6. (Color online) Natural logarithm of the Mössbauer absorption area for $Ni_{0.3}Fe_{0.7}Ga_2S_4$.

reorientation. Finally, this suggests that a viscous "spin gel" regime with nearly-frozen spin state, and slowly fluctuating, exists between $T_{\rm f}$ and $T_{\rm N}$, caused by the absolute paramagnetic disordered-spin at $T_{\rm N}$ [11]. The Debye temperature for octahedral site can be calculated from the temperature dependence of the resonant absorption area for each sub-spectrum at low temperatures, as shown in Fig. 6. The calculated Debye temperature octahedral site was $\Theta_{\rm D} = 260~{\rm K}$.

4. Conclusions

We have investigated the crystallographic and magnetic properties of Ni_{0.3}Fe_{0.7}Ga₂S₄. The crystal structure of the sample is found to be 2 D-triangular lattice with space group P-3m1 from a Rietveld refinement of the XRD data. From SQUID measurements, the sample showed an antiferromangetic behavior with $\theta_{\rm W} = -90.54$ K, and spin-freezing transition at a freezing temperature is $T_{\rm f} = 11$ K. $T_{\rm N}$ is determined to be 26 K from the ratio of the intensities ($R_{\rm q} = A_{\rm I}/A_{\rm 2}$). We found by Mössbauer analysis that spin reorientation appeared at $T_{\rm f}$, and $T_{\rm N}$ due to the changing of $E_{\rm Q}$ at various temperatures.

Acknowledgment

This work was supported by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (2013-000671).

References

[1] A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature **386**, 156 (1997).

- [2] D.-H. Kim and C.-Y. You, J. Magn. 13, 70 (2008).
- [3] K. Ohgushi, T. Ogasawara, Y. Okimoto, S. Miyasaka, and Y. Tokura, Phys. Rev. B 72, 155114 (2005).
- [4] P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H. Chen, R. M. Ibberson, Y. Koyama, Y. S. Hor, V. Kiryukhin, and S. W. Cheong, Nature 416, 155 (2002).
- [5] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, and Y. Maeno, Science 309, 1697 (2005).
- [6] Y. Nambua, S. Nakatsujia, and Y. Maenoa, J. Magn. Magn. Mater. 310, 1316 (2007).
- [7] Y. Nambua, M. Ichiharab, Y. Kiuchib, S. Nakatsujib, Y. Maeno, J. Cryst. Growth 310, 1881 (2008).
- [8] P. Schiffer, A. P. Ramirez, D. A. Huse, P. L. Gammel, U. Yaron, D. J. Bishop, and A. J. Valentino, Phys. Rev. Lett. 74, 2379 (1995).
- [9] J. P. Attfield, A. M. T. Bell, L. M. Rodriguez-Martinez, J. M. Greneche, R. J. Cernik, J. F. Clarke, and D. A. Perkins, Nature 396, 655 (1998).
- [10] Y. Nambu, R. T. Macaluso, T. Higo, K. Ishida, and S. Nakatsuji, Phys. Rev. B 79, 214108 (2009).
- [11] P. D. Réotier, A. Yaouanc, D. E. MacLaughlin, Songrui Zhao, T. Higo, S. Nakatsuji, Y. Nambu, C. Marin, G. Lapertot, A. Amato, and C. Baines, Phys. Rev. B 85, 140407(R) (2012).
- [12] B. R. Myoung, S. J. Kim, and C. S. Kim, J. Korean Phys. Soc. 52, 1846 (2008).
- [13] B. R. Myoung, S. J. Kim, and C. S. Kim, J. Korean Phys. Soc. 53, 750 (2008).
- [14] B. R. Myoung, S. J. Kim, B. W. Lee, and C. S. Kim, J. Appl. Phys. 107, 09E106 (2010).
- [15] B. R. Myoung, W. J. Kwon, S. J. Kim, Y. Lee, Y. H. Jeong, and C. S. Kim, IEEE Trans. Magn. 48, 1301 (2012).
- [16] I. Presniakov, A. Baranov, G. Demazeau, V. Rusakov, A. Sobolev, J. A. Alonso, M. J. Martínez-Lope, and K. Pokholok, J. Phys. Condens. Matter 19, 036201 (2007).