Browse > Article
http://dx.doi.org/10.3741/JKWRA.2020.53.3.181

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model  

Jun, Sanghee (Numerical Modeling Center, Korea Meteorological Administration)
Park, Jeong-Hyun (Numerical Modeling Center, Korea Meteorological Administration)
Boo, Kyung-On (Numerical Modeling Center, Korea Meteorological Administration)
Kang, Hyun-Suk (Numerical Modeling Center, Korea Meteorological Administration)
Publication Information
Journal of Korea Water Resources Association / v.53, no.3, 2020 , pp. 181-191 More about this Journal
Abstract
In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.
Keywords
Soil moisture; Spin-up; Land surface model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peters-Lidard, C.D., Blackburn, E., Liang, X., and Wood, E.F. (1998). "The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures." Journal of the Atmospheric Sciences, Vol. 55, No. 7, pp. 1209-1224.   DOI
2 Peters-Lidard, C.D., Houser, P.R., Tian, Y., Kumar, S.V., Geiger, J., Olden, S., and Mitchell, K. (2007). "High-performance Earth system modeling with NASA/GSFC's land information system." Innovations in Systems and Software Engineering, Vol. 3, No. 3, pp. 157-165.   DOI
3 Peters-Lidard, C.D., Zion, M.S., and Wood, E.F. (1997). "A soilvegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes." Journal of Geophysical Research: Atmospheres, Vol. 102, No. D4, pp. 4303-4324.   DOI
4 Rodell, M., Houser, P.R., ambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., and Toll, D. (2004). "The global land data assimilation system." Bulltin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394.   DOI
5 Rodell, M., Houser, P.R., Berg, A.A., and Famiglietti, J.S. (2005). "Evaluation of 10 methods for initializing a land surface model." Journal of Hydrometeorology, Vol. 6, No. 2, pp. 146-155.   DOI
6 Rui, H., and Beaudoing, H. (2019). README document for NASA GLDAS version 2 data products. NASA GSFC, Greenbelt, M.D, U.S., pp. 5-20.
7 Santanello Jr, J.A., Dirmeyer, P.A., Ferguson, C.R., Findell, K.L., Tawfik, A.B., Berg, A., Ek, M., Gentine, P., Guillod, B.P., Heerwaarden, C. van, Roundy, J., and Wulfmeyer, V. (2018). "Land-atmosphere interactions: the LoCo perspective." Bulletin of the American Meteorological Society, Vol. 99, No. 6, pp. 1253-1272.   DOI
8 Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K., and Chen, F. (1996). "Simple water balance model for estimating runoff at different spatial and temporal scales." Journal of Geophysical Research: Atmospheres, Vol. 101, No. D3, pp. 7461-7475.   DOI
9 Santanello Jr, J.A., Kumar, S.V., Peters-Lidard, C.D., and Lawston, P.M. (2016). "Impact of soil moisture assimilation on land surface model spinup and coupled land-atmosphere prediction." Journal of Hydrometeorology, Vol. 17, No. 2, pp. 517-540.   DOI
10 Santanello, J.A., Ferguson, C., Ek, M.B., Dirmeyer, P., Tuinenburg, O.A., Jacobs, C.M.J., and Findell, B. (2011). "Local land-atmosphere coupling (LoCo) research: Status and results." Global Energy and Water Cycle Experiment new, Vol. 21, No. 4, pp. 7-9.
11 Seck, A., Welty, C., and Maxwell, R.M. (2015). "Spin-up behavior and effects of initial conditions for an integrated hydrologic model." Water Resources Research, Vol. 51, No. 4, pp. 2188-2210.   DOI
12 Smirnova, T.G., Brown, J.M., Benjamin, S.G., and Kenyon, J.S. (2016). "Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) available in the Weather Research and Forecasting (WRF) model." Monthly Weather Review, Vol. 144, No. 5, pp. 1851-1865.   DOI
13 Sulla-Menashe, D., and Friedl, M.A. (2018). User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. US Geology Survey, Reston, V.A, U.S., pp. 1-17.
14 Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H., Koren, V., Duan,Y., Ek, M., and Betts, A. (1996). "Modeling of landsurface evaporation by four schemes and comparison with FIFE observations." Journal of geophysical research, Vol. 101, No. D3, pp. 7251-7268.   DOI
15 Yang, Z.L., Dickinson, R.E., Henderson Sellers, A., and Pitman, A.J. (1995). "Preliminary study of spin up processes in land surface models with the first stage data of project for intercomparison of land surface parameterization schemes phase 1 (a)." Journal of Geophysical Research: Atmospheres, Vol. 100, No. D8. pp. 16553-16578.   DOI
16 Beaudoing, H., and Rodell, M. (2016). GLDAS Noah land surface model L4 3 hourly 0.25 x 0.25 degree V2.1. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, M.D., U.S.
17 Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, R.L.H., Menard, C.B., Edwards, J.M., Hendry, M.A., Porson, A., Gedney, N., Mercado, L.M., Sitch, S., Blyth, E., Boucher, O., Cox, P.M., Grimmond, C.S.B., and Harding, R.J. (2011). "The Joint UK Land Environment Simulator (JULES), model description-Part 1 : Energy and water fluxes." Geoscientific Model Development, Vol. 4, pp. 677-699.   DOI
18 Bett, F.C., Mitchell, K.E., and Janjic, Z.I. (1997). "Assessment of land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data." Monthly Weather Review, Vol. 125, No. 11, pp. 2896-2916.   DOI
19 Chang, S., Hahn, D., Yang, C.H., Norquist, D., and Ek, M. (1999). "Validation study of the CAPS model land surface scheme using the 1987 Cabauw/PILPS dataset." Journal of Applied Meteorology, Vol. 38, No. 4, pp. 405-422.   DOI
20 Chen, F., Janjić, Z., and Mitchell, K. (1997). "Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model." Boundary-Layer Meteorology, Vol. 85, No. 3, pp. 391-421.   DOI
21 Cosgrove, B.A., Lohmann, D., Mitchell, K.E., Houser, P.R., Wood, E.F., Schaake, J.C., Robock, A., Sheffield, J., Duan, Q., Luo, L., Higgins, R.W., Pinker, R.T., and Tarpley J.D. (2003). "Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS)." Journal of Geophysical Research. Vol. 108, No. D22, pp. 8845.
22 Gutman, G., and Ignatov, A. (1998). "The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models." International Journal of remote sensing, Vol. 19, No. 8, pp. 1533-1543.   DOI
23 Dharssi, I., Bovis, K.J., Macpherson, B., and Jones, C.P. (2011). "Operational assimilation of ASCAT surface soil wetness at the Met Office." Hydrology and Earth System Sciences, Vol. 15, No. 4, pp. 2729-2746.   DOI
24 Dirmeyer, P.A. (2011). "The terrestrial segment of soil moistureclimate coupling." Geophysical Research Letters, Vol. 38, No. 16, p. L16702.   DOI
25 Fischer, E.M., Seneviratne, S.I., Luthi, D., and Schar, C. (2007). "Contribution of land-atmosphere coupling to recent European summer heat waves." Geophysical Research Letters, Vol. 34, No. 6, p. L06707.   DOI
26 Koster, R.D., Suarez, M.J., Ducharne, A., Stieglitz, M., and Kumar, P. (2000). "A catchment-based approach to modelling land surface processes in a general circulation model: 1. Model structure." Journal of geophysical research, Vol. 105, No. D20, pp. 24809-24822.   DOI
27 Hansen, M.C., Defries, R.S., Townshend, J.R.G., and Sohlberg, R. (2000). "Global land cover classification at 1km spatial resolution using a classification tree approach." International Journal of Remote sensing, Vol. 21, No. 6-7, pp. 1331-1364.   DOI
28 Kalnay, E., and Kanamitsu, M. (1988). "Time schemes for strongly nonlinear damping equations." Monthly Weather Review, Vol. 116, No. 10, pp. 1945-1958.   DOI
29 Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., and Van Brussel, H. (1999). "Reconfigurable manufacturing systems." CIRP annals, Vol. 48, No. 2, pp. 527-540.   DOI
30 Koster, R., and Suarez, M. (1996). "Energy and Water Balance Calculations in the Mosaic LSM." National Aeronautics and Space Administration (NASA) Technical Memorandum 104606, NASA/Goddard Space Flight Center, Greenbelt, M.D., U.S., Vol. 9, pp. 1-38.
31 Kotter, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). "World map of the Köppen-Geiger climate classification updated." Meteorologische Zeitschrift, Vol. 15, No. 3, pp. 259-263.   DOI
32 Kumar, S.V., Peters-Lidard, C.D., Tian, Y., Houser, P.R., Geiger, J., Olden, S., Lighty, L., Eastman, J.L., Doty, B., Dirmeyer, P., Adamsc, J., Mitchell, K., Woode, E.F., and Sheffield, J. (2006). "Land information system: An interoperable framework for high resolution land surface modeling." Environmental Modelling and Software, Vol. 21, No. 10, pp. 1402-1415.   DOI
33 Kumar, S.V., Reichle, R.H., Harrison, K.W., Peters-Lidard, C.D., Yatheendradas, S., and Santanello, J.A. (2012). "A comparison of methods for a priori bias correction in soil moisture data assimilation." Water Resources Research, Vol. 48, No. 3, p. W03515.
34 Niu, G.-Y., Yang, Z.-L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y. (2011). "The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements." Journal of Geophysical Research, Vol. 116, No. D12, p. D12109.   DOI
35 Lim, Y.J., Hong, J., and Lee, T.Y. (2012). "Spin-up behavior of soil moisture content over East Asia in a land surface model." Meteorology and Atmospheric Physics, Vol. 118, No. 3-4, pp. 151-161.   DOI
36 Livneh, B., Xia, Y., Mitchell, K.E., Ek, M.B., and Lettenmaier, D.P. (2010). "Noah LSM snow model diagnostics and enhancements." Journal of Hydrometeorology, Vol. 11, No. 3, pp. 721-738.   DOI
37 Mahrt, L., and Ek, M. (1984). "The influence of atmospheric stability on potential evaporation." Journal of Climate and Applied Meteorology, Vol. 23, No. 2, pp. 222-234.   DOI
38 Mahrt, L., and Pan, H. (1984). "A two-layer model of soil hydrology." Boundary-Layer Meteorology, Vol. 29, No. 1, pp. 1-20.   DOI
39 Mitchell, K. (2005). The community Noah Land-surface model (LSM), User' guide, recovered from ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1. National Centers for Environmental Prediction/Environmental Modelling Center.
40 Orth, R. (2013). Persistence of soil moisture - Controls, associated predictability and implications for land surface climate. Ph. D. dissertion, Eidgenossische Technische Hochschule Zurich, Zurich, Swiss, pp. 1-143.
41 Orth, R., Dutra, E., Trigo, E.I.E., and Balsamo, G. (2017). "Advancing land surface model development with satellite-based Earth observations." Hydrology and Earth System Sciences, Vol. 21, No. 5, pp. 2483-2495.   DOI
42 Pan, H.L., and Mahrt, L. (1987). "Interaction between soil hydrology and boundary-layer development." Boundary-Layer Meteorology, Vol. 38, No. 1-2, pp. 185-202.   DOI