Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.2.126

Evidence of Spin Reorientation by Mössbauer Analysis  

Myoung, Bo Ra (Department of Physics, Kookmin University)
Kim, Sam Jin (Department of Physics, Kookmin University)
Kim, Chul Sung (Department of Physics, Kookmin University)
Publication Information
Abstract
We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.
Keywords
m$\ddot{o}$ssbauer spectroscopy; spin reorientation; electric quadrupole splitting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D.-H. Kim and C.-Y. You, J. Magn. 13, 70 (2008).   DOI   ScienceOn
2 Y. Nambua, M. Ichiharab, Y. Kiuchib, S. Nakatsujib, Y. Maeno, J. Cryst. Growth 310, 1881 (2008).   DOI   ScienceOn
3 S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, and Y. Maeno, Science 309, 1697 (2005).   DOI   ScienceOn
4 Y. Nambua, S. Nakatsujia, and Y. Maenoa, J. Magn. Magn. Mater. 310, 1316 (2007).   DOI   ScienceOn
5 P. Schiffer, A. P. Ramirez, D. A. Huse, P. L. Gammel, U. Yaron, D. J. Bishop, and A. J. Valentino, Phys. Rev. Lett. 74, 2379 (1995).   DOI   ScienceOn
6 J. P. Attfield, A. M. T. Bell, L. M. Rodriguez-Martinez, J. M. Greneche, R. J. Cernik, J. F. Clarke, and D. A. Perkins, Nature 396, 655 (1998).   DOI   ScienceOn
7 Y. Nambu, R. T. Macaluso, T. Higo, K. Ishida, and S. Nakatsuji, Phys. Rev. B 79, 214108 (2009).   DOI   ScienceOn
8 B. R. Myoung, S. J. Kim, and C. S. Kim, J. Korean Phys. Soc. 52, 1846 (2008).   DOI   ScienceOn
9 B. R. Myoung, S. J. Kim, and C. S. Kim, J. Korean Phys. Soc. 53, 750 (2008).   DOI   ScienceOn
10 B. R. Myoung, S. J. Kim, B. W. Lee, and C. S. Kim, J. Appl. Phys. 107, 09E106 (2010).   DOI
11 B. R. Myoung, W. J. Kwon, S. J. Kim, Y. Lee, Y. H. Jeong, and C. S. Kim, IEEE Trans. Magn. 48, 1301 (2012).   DOI   ScienceOn
12 I. Presniakov, A. Baranov, G. Demazeau, V. Rusakov, A. Sobolev, J. A. Alonso, M. J. Martínez-Lope, and K. Pokholok, J. Phys. Condens. Matter 19, 036201 (2007).   DOI   ScienceOn
13 A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156 (1997).   DOI   ScienceOn
14 P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H. Chen, R. M. Ibberson, Y. Koyama, Y. S. Hor, V. Kiryukhin, and S. W. Cheong, Nature 416, 155 (2002).   DOI   ScienceOn
15 P. D. Réotier, A. Yaouanc, D. E. MacLaughlin, Songrui Zhao, T. Higo, S. Nakatsuji, Y. Nambu, C. Marin, G. Lapertot, A. Amato, and C. Baines, Phys. Rev. B 85, 140407(R) (2012).   DOI
16 K. Ohgushi, T. Ogasawara, Y. Okimoto, S. Miyasaka, and Y. Tokura, Phys. Rev. B 72, 155114 (2005).   DOI