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VARIATIONAL PRINCIPLE FOR
QUANTUM UNBOUNDED SPIN SYSTEMS

5. D. CHor, 8. G. Jo, H. I. KM, H. H. Leg, anD H. J. Yoo

ABSTRACT. We study the variational principle for quantum un-
bounded spin systems interacting via superstable and regular in-
teractions. We show that the (weak) KMS state constructed via the
thermodynamic limit of finite volume Green’s functions satisfies the
Gibbs variational equality.

1. Introduction

In this paper, we study the variational principle for quantum un-
bounded spin systems. Mostly, we aim to show that the (weak) KMS
states satisfy the Gibbs variational equality.

In bounded spin systems (that is, the single spin states correspond
to compact sets and finite dimensional Hilbert spaces for classical and
quantum systems, respectively), it has been well-established that the
equilibrium states for the systems can be investigated via the tangent
functionals to the pressure which is a convex function of interactions, or
via the Gibbs variational principle, or via the DLR (resp. KMS) condi-
tions. These methods have turned out to be equivalent to each other (see
the references [3-5, 10-11, 14] and the original papers cited therein). So,
it would be worthwhile to extend the theory to the unbounded systems.
‘The classical part of this problem has been investigated by Kiinsch [6],
and so we restrict our attention only to quantum systems. The study
of unbounded (continuous) spin systems, which we consider in this pa-
per, draws also much attention from its close connection with Euclidean
quantum field theory [1].
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The interactions which we consider in this paper satisfy the super-
stability and regularity in the sense of Ruelle [12]. The classical model
for these interactions has been extensively investigated by Lebowitz and
Presutti [7]. The quantum unbounded spin systems has been studied
e.g., in [8] aiming at the survey of the existence of the thermodynamic
limit theory of pressure and the existence and uniqueness of the equilib-
rium states satisfying the (weak) KMS condition. In [9], there has been
proposed a characterization of Gibbs (equilibrium) states for quantum
unbounded spin systems. In this paper, we will show the existence of
mean entropy and show that the (weak) KMS state constructed in [§]
via the thermodynamic limit of finite volume Green’s functions satisfies
the Gibbs variational principle.

We organize this paper as follows: In Section 2, we give necessary
notations, preliminaries, and main results. Section 3 is devoted to show
the proofs. In Appendix, we prove some technical inequalities needed in
Section 3.

2. Notations, Preliminaries and Main Results

It is generally accepted that in quantum statistical mechanics, the
equilibrium states are those of KMS states [2-3, 5, 14]. For quantum
unbounded spin systems, by using the Green’s function method [3], a
state satisfying (weak) KMS condition has been constructed in [8]. In {9],
there has been proposed a characterization of Gibbs states by using the
concept of Gibbs measures and the conditional reduced density matrices.
We will show that the {weak) KMS state constructed in [8] satisfies
the Gibbs variational equality. Let us begin with presenting necessary
notations. We refer to [9] for details.

Let Z* be the v-dimensional integer lattice. At each site i € Z%, there
corresponds a vector spin variable z, € R4 For z := (z',--- ,2%) € RZ
and i := (41, -- ,1i,) € Z”, we write

o= [T, il = max fil.

1<
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When a subset A C Z” is a finite set, we will write A CC Z¥. We will
consider both interactions between the sping at different sites as well as
self interactions.
For each bounded region A < C Z%, the Hilbert space for the un-
bounded spin systems is given by
?{A = ®iEAL2(Rd, d.’.Cg)

21 = (R, day),

where dz, is the Lebesgue measure on R? for each 1 € Z¥ and dxy =
X,eadr;. The Hamiltonian operator for the region A CC Z¥ is given by

1
(2.2) Hy = —§ZA, + V{za),
€A
where A; is the Laplacian operator for the variable z; € R? and V(z,)

is the potential energy in the region A. Throughout this paper, we will
impose the following conditions on the interaction:

ASSUMPTION 2.1. The interaction & = (®a)accze satisfies the fol-
lowing conditions:

(a) @ is a Borel measurable function on (R®)® for each A CcC 7.

(b) @ is invariant under translations of Z¥, ie., for any i € 7%,
D = 79, where T, is the natural translation of functions.

(c) (Superstability) There are A > 0 and ¢ € R such that for every
Ty € (]Rd)AJ
Viza) =) ®alza) > Y [A2? —d.

ACA EA

(d) (Strong regularity) There exists a decreasing positive function ¥
on the natural numbers such that

U(ry < Kr™""¢ for some K and ¢ > 0 with Z‘I’(|z|) < A
=7

Furthermore, if Ay and A, are disjoint finite subsets of Z¥ and if one
writes

V(mi\lUAz) = V(mAJ + V(mﬁz) + W(Eﬁn 371"12):
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then the bound
|
A PE A

holds.

For each bounded region A CC Z*, the C™-algebra for local observ-
ables is defined by

(2.3) Ap = L{H4),

where £(H4) is the algebra of all bounded linear operators on Hy. I
AN Ay = 0, then Hy,ua, = Ha, @ Ha, and A,, is isomorphic to the
C*-algebra Ay, ® 14,, where 1,, denotes the identity operator on H,,.
In this way, we identify .44 as a sub-algebra of Ay when A C A, Let

(2.4) A = UpcczAn

be the C*-algebra of the quasilocal observables. Notice that .4 has an
identity.

The partition function in a region A CC Z* is given by
(2.5) ZE = Trg(e7H),

where Tr4 means the trace on the Hilbert space H,. Notice that by the
superstability condition of Asswmption 2.1 (c), e~ belongs to the trace
class and so Z7 is well defined as a finite number. The finite volume
pressure is defined by
g, L

(2.6) Py A
We will suppress the superseript © from the notations whenever there is
no confusion involved.

We notice that by the Feynman-Kac formula [13], the operator e~
has its integral kernel function

(2.7) e (zy,yn) = /PI_MyA(dsA) exp[—/o V(SA(T))CET],

where 2, and yy are points in (R4, sy € (C([0,1]; RE)}*, and P, 4, (dsa)
is the conditional Wiener measure on the path space

Qmmm = {SA S (C([O, 1];]Rd))A| SA(O) = L4, SA(I) = yA}'

log Z3.

Hp
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(See e.g. [13] for details.) We will simply write V (s, ) for fGI Visa(r)) dr.
Thus, the partition function £, can be rewritten as an integral over a
path space:

'r""A A
Since, by a transla.tlon Ya — Ya — Za, the measure P, . (ds,) on
%, », becomes the measure Fho(dss) =: P(dss) on Qop, by letting
A(dsy) = dzpP(dsy) on (R x o, the expression in (2.8) can be
further simplified:

(2.9) Zy = /)\(dslx)e”v(s-‘).

By using the above Wiener integral formalism and Ruelle-type probabil-
ity estimates, Park has shown the existence of the thermodynamic limit
of the pressure with free boundary condition [8]. Recall that a sequence
{Az}, A, CC ZY, is said to be tending to Z in the sense of van Hove (we
write Ema,_zv (van Hovey) if: (8) Apys D Ag, (b) Ay D A forany A CC Z2¥
and some n, (¢) given any parallelepiped I" and the partition 7(I") of Z¥
generated by translations of T’

Np(An)

NE(A) 7

where N (A,,) is the number of sets of 7(T') contained in A, and N (A,)
is the number of sets with non-void intersection with A,,.

lim Np (A,) = oo, lim

THEOREM 2.2. ([8, Theorem 2.2|) Suppose that the hypotheses of
Assumption 2.1 hold. Then, the limit

lim Pt = p?
An—Z¥ (van Hove)

exists.

We now consider the equilibrium states for quantum systems. Define
the finite volume Green’s functions [3] by

(2.10) Gu(A, B;t) := wa(Aal(B)), A, B € Ay,
where w, is the local Gibbs state on .A4:

(2.11) wr(A) = iTrA( ) A A,
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and o is the time evolution automorphism on .4,:
(2.12) ol (B) = et Be ™ B e A,

By Hahn-Banach theorem, the state wy can be extended to a state on
A and we use the same notation for the extension. Notice that G, is
bounded as

(2.13) |Ga(A, Bit) < [IA] ] BII-

Thus by Tychonoff’s theorem, there exists a subsequence {A,} C Z¥
such that

(2.14) Ga(A, B;t) := lim Gy (A, B;t)
exists for all A, B € A, t € R [3]. Clearly, the values
(2.15) w(d) :=G(A,B;t), AcA

determine a state w over the quasilocal algebra A. That is, w is a
positive-definite linear functional with norm one on A. Let us impose a
further condition on the interaction:

AssUMPTION 2.3. {Polynomial boundedness of interaction) There ex-
ist a constant D > 0 and a natural number n such that the one-body
interaction ®yy(x,) = P(z,) satisfies the following bound:

Pz} < D(|m|" +1), 1€Z"

Under the conditions of Assumption 2.1 and Assumption 2.3, Park
has shown that the state w in (2.15) satisfies a (weak) KMS condition.
We refer to [8] for the details. We take the state w as a probe for our
purpose.

The mean entropy for the states of quantum systems is defined as
follows. Let p be any state on A and p, the restriction of g to Aa,
A CC Z¥. Suppose that p, is a normal state on Ay, 1.e., there exists a
density matrix p* € A, such that

(2.16) palA) =Tra(pMA), Ae Ay



Variational principle for quantum unbounded spin systems 585

The entropy of p in A is defined by [3, 5, 14]

Sa(p) = —Tra(p™ log pi*)
(2.17)
= —paflogp™).
From the definition, we see that {we omit ® from the notations)
(218) SA(UJA) — wA(HA) = |A|PA

In general, we have the following properties:

PROPOSITION 2.4. Suppose that p is a state on A such that the
restrictions py of p to any Ay, A CC Z¥, are normal states. Then, the
following properties hold:

{a) For any A CC 27,

(2.19) Salp) — p(Hy) < [A|P,.
(b) The mean entropy
(2.20) s(p) -== lim a7 8¢, (p)

exists as a nonnegative finite number, where C, is a cube of sides a.
We will give a proof of Proposition 2.4 in the next section. As a
corollary to Proposition 2.4, we have the following variational inequality:
COROLLARY 2.5. Suppeose the hypotheses of Proposition 2.4 hold,
Then, the inequality
(2.21) s(p) — liminfa™*p(He, ) < P?
a—+J)
holds.
The main purpose of this paper is to show that for the state w given

in (2.15), the equality holds in {2.21):

THEOREM 2.6. Suppose the hypotheses of Assumption 2.1 and 2.3
hold. Let w be the equilibrium state given in (2.15). Then, the mean
energy per unit volume lim, .., e "w(H¢, ) exists and the equality

s(w) — lim e Yw{Hg) = P*

holds.
The proof of the above theoremn will be given in the next section.
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3. Proofs of Main Results

In this section, we provide with the proofs for the main results given
in the last section. Let us begin with some lemmas that will be needed.

LeMma 3.1. (Jensen’s inequality) Let p be any state on .A. Then for
any self-adjoint B ¢ A, e”B) < p(eB),

The proof of the above lemma can be found, e.g., in {5, Lemma 1.3.1].
Recall the definition of entropy for states in (2.17).

LEMMA 3.2. Suppose that p is a state on A such that the restrictions
pr of p to any Ax, A CC Z¥, are normal states with density matrices
p™ € Ay, Then the following properties hold:

(a) Sx(p) = 0 (positivity).
{b) ANA =0 == Saun(p) < Si(p) + Sa(p) (subadditivity).

Proof (a) is obvious since Trs(pY) = 1. For {b), we notice that the
bound

(3.1) Tr(Alog A) — Tr(Alog B) > Tr{A — B)

holds for any trace class non-singular positive operators A and 5. By
letting A := p4) and B = pi® @ p? in (3.1), we get

Saon(p) = —Trpauan(Alog A)

—Triaun)(Alog B)

~Tra(p™ Tog o) — Tryr(p™7 log p™*7)
Salp) + Su(p)-

I

[l

l

Proof of Proposition 2.4. (b) is a simple consequence of the subad-
ditivity of entropy in Lemma 3.2 (b). In order to prove (a), let {e;} be
the normalized eigen-vectors of ot with plMe, = A;e;. We notice that
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> ) =1 Then

K
eSA(P)—P(HA) — eTﬁ'A(P(M(flog,omLH;\])
= exp [Z Aj(—log A — < e, Hpe; >

1
Zexp[< €;,—Hpe, >| (by Jensen’s inequality)

A

7
< Z < €, B—HAEJ > (by Lemma 3.1)
7

— BA(E_HA) — e_lAlPA_ D

We are now going to prove Theorem 2.6. For that purpose, we need
to define some notations. Recall the local Gibbs states wy defined in
(2.11). We simply write w, for wy, , where {A,} is a sequence in (2.14).
We notice that the state w in (2.15) is a weak limit of {w,}. Let us write
(3.2) KM .= J-Jexp(—HA )

2, "

and w® the density matrix of the restriction of w to .Ay. When H;
and Hp are two Hilbert spaces and if A is a trace class operator on
H1 @ Ha, we denote by Tryy,em,n,)(A) the partial trace of A on Hy, ie.,
Tris, @) (A) is a trace class operator on H; such that

Tr’h’l (Trl(?'ll@‘?{:zl?ﬁ)(‘il)) = TI'H1®H2 (A)

When A C A’, we simply write Triara)(A) for Trip, s, (A). One notes
that

(3.3) W = - lim Tegp K™,

where w-limit means that

(3.4) Trp (W™ A} = Tim Tra((Tra, B A), A€ A

We fu(r?her simplify the notation Try 4y () hyy K&") and T, a0 K tn)
by K A:\ A

Proof of Theorem 2.6. By Corollary 2.5, it is enough to show
(3.5) s(w} > limsup a“w(Hg,) + PP,

a—0a
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By the inequality {3.1), the subadditivity of entropy in Lemma 3.2 (b)
and (2.18)-(2.19), we see that

(3.6)

Salw) = — T ('™ log w™)

= —lim,—u TrA(Kg”) log w't))

A%

—limsup, ., Tra(K{™ log K{™)

lim sup,, o Sa(ws)

v

lim sup,, o [Sa, (wn) — Saaliwn)]
lim SUP, 00 [wn(HAn) -+ |An|PAn - wﬂ(HAﬂ\A) — ]An \ AlPAn\A].

v

Recall the definition of the measure dA on the path spaces appeared in
{2.9) and define for 0 < o < 1,

(3.7) Zpfa) = fdA(SAn)eXP[—V(SA) = Vi(sana) — aW (s, saa)l-

Notice that
log Zy,(1) = log Z4, = |Anl| Pa,,
(38)
log ZAH(U) =log Zy + log ZAn\A = ‘A|PA -+ U&n \ A|PAR\A-

Using (3.8) in the last expression of (3.6), we get

( ) SA(w) = lim SUPy o0 [WR(HA) + |Al-PA + wn[W(xA; xAﬂ\A))
3.9
+ log Zy (1) —log ZAR(O)].

In Appendix, we will show that there exists ¢ > 0 such that the bounds

imsup, o, [wa(W(za, 2a04))] < CZZ‘MH*JD:

(3.10) A JEAT
limsup,,_,., |log Za,(1) —log Z4,(0)] < CZZ (e — )

€A JEAS

hold. Using (3.10) in (3.9), we get

(3.11) Sa{w) > w(Hy) + APy — 2> Y " (fi — ).

€A jEAT
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We take A to be the cubes C, of sides a and divide both sides of (3.11) by

a”, the volume of C;,. Since ¥(r} decreases as r increases and Z T(li]) <

EZY
oo, it is easy to show that

lim a™ " 3" ¥(li - j)) =0.

amee =0, 32,0
Thus by using (2.20) and Theorem 2.2, we get the inequality (3.5). The
proof is now completed. ]

4. Appendix

We show the inequalities in (3.10). We first prove the second inequality
of {3.10). By the mean value theorem, there exists a; € (0, 1) such that
(A1)

log Zy,(1) — log Z,(0)

d
=Ta log ZAn(a)’

= ZAﬂl(al) fd)\(sAn) exp [— V{sa) = V(sana) — aaWisy, SA,.\A)]

( — W (sa, SA“\A))

=1 —W(SA, SA,,\A) 2oyt

=01

where the expectation < - >,, 0 < @ < 1, is defined by
<A>y = m /d/\(SAn) exp [ — V(sa) — V{sana)

(A2)
— aW(sa, SAN\A)}A(%)-

We then have
2

d
da? 18 Zy,(a) =< W(sy, s504) >0 — < W(sa, san) >22 0.

That is, the function a — ZLlogZ, (a) is a monotone function and
hence we have

|log Z4, (1} — log Z4, (0}
(A.3) p 4
< max { log Zy, (a)| |, [Llog Zy ()| | }
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We calculate Efi;log Z, (a){azl. The other one can be done similarly.
First, notice that by a superstable estimate established in 9, Proposition
2.5), there exist A* > 0 and 4 > 0 such that for any A C Ay,

1

(A9 5

d\(saa)e” ) <exp [ (—A'sE+d)).

A

Then, by the regularity of the interaction given in Assumption 2.1 (d),
we see that

d
1L tog 20, (@),

1
= \4/dA(SAn)e"V(sA“)W(SmSAn\A)|
Z4,

<Y Y Sui-dhy- f dA(sa)e Ve (5] + s])

AJEXH\A
<33 w4 / AN () dA(s; ) AT (52 4 52
e jeh, \A
<ed > vl
iEA JEANA

In order to prove the first inequality of (3.10}, we notice, by using the
regularity of the interaction and (A.4}, that
(A.5)

| (W{za, z4,00))

1
= |——/d)\(SAn)e_V(s““)W{CEAJ-’EA,.\A)|
2y,

<30 Y 2wli—al) [N I 0 4550

€A FEAL A

Naotice that

(40 [iNpr a0 = [dnat [P ds)e

By using the same argument used in the proof of the bounds in {A.13)-
(A.15) of [9], we get that the r.h.s. of (A.6) is bounded by

(A.7) /da% plem A < < o0,
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for some constants A’, #, and ¢’. Inserting (A.7) into (A.5), we finish
the proof of (3.10}.
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