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Magnetic properties of a system containing magnetic ions

are related to its electronic structure,1-4 and are commonly

probed by measuring the temperature-dependence of its

magnetic susceptibility χ(T) at a given magnetic field, the

field-dependence of its magnetization M(H) at a very low

temperature, or the magnetic specific heat as a function of

temperature. When fitted with a Curie-Weiss law, the para-

magnetic region of the χ(T) vs. T plot leads to the Curie-

Weiss temperature θ and the effective magnetic moment μeff.

For a magnetic system consisting of equivalent magnetic

ions, the mean field theory (MFT)2-4 provides a simple

relationship between the θ to spin exchange constants Js.

Surprisingly, however, no such MFT relationship has been

available for a magnetic system made up of nonequivalent

magnetic ions. Consequently, it is worthwhile to have a

MFT relationship between θ and Js that is valid for a mag-

netic system composed of nonequivalent magnetic ions.

In this Communication we derive such a MFT relationship

and test its validity by evaluating the θ values of the mag-

netic orthosilicate Fe2SiO4,
5-7 whose magnetic structures

were previously investigated in terms of their calculated spin

exchange constants.7

Under a weak probing magnetic field H, the magnetic

susceptibility, χ, of a magnetic system is given by χ =M/H,

where M is the magnetization of the system induced by H.

According to the MFT, the effective magnetic field acting on

a given magnetic ion is given by the sum of the applied

magnetic field H and the additional magnetic field arising

from its interactions with the surrounding magnetic ions. To

derive a relationship between the Curie-Weiss temperature

and spin exchange constants for a general magnetic system,

we first follow the MFT description of Smart3 by dividing

the magnetic lattice into sublattices such that a magnetic ion

does not interact with any neighbor within its own sublattice.

Given the number of sublattices needed to achieve this condi-

tion as n, we label the sublattices by numerical subscripts.

Then, the effective magnetic field Hi acting in the sublattice

i is written as

( ),  (1)

where Mj is the magnetization of the jth sublattice and γij is
the mean field coefficient for the field exerted on an ion in

the ith sublattice by its neighbor on the jth sublattice. Here γij
= 0 due to our choice of the sublattices. For i ≠ j

,  (2)

where D = , g is the electron g factor, β is the Bohr

magneton, N is Avogadro’s number, zij is the number of j

neighbors of the ith atom, and Jij is the exchange constant

between the ith atom and its jth neighbor. The vector nota-

tions for Mi and H can be dropped because the n sublattices

are magnetized in the direction of H in the high temperature

region where the material is paramagnetic. Then, 

(3)

where i = 1, 2, …, n, and C is the Curie constant, C =

DS(S+1)/3k. By combining Eqs. (3) with the total magneti-

zation  with  and γii = 0 we have 

(4)

In systems consisting of chemically identical magnetic

ions of spin S, not all these ions may be equivalent due to the

difference in their site symmetry. Even for such cases,

however, the moments of the nonequivalent magnetic ions

are practically identical. For example, the neutron diffraction

study of Fe2SiO4 at 10 K by Lottermoser et al. showed5 that

the Fe(1) (site symmetry i) and Fe(2) (site symmetry m) sites

have the moments 4.41 and 4.40 μB, respectively, which

consists of two kinds of Fe2+ (S = 2) ions (Fig. 1).8 

Therefore, if each spin site is a spin sublattice, it is reason-

able to assume that the magnetization in each sublattice is

practically equal to the average, Mav, of all the moments.

Thus, we impose the condition that each spin sublattice
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contains only one spin site. Then M1 = M2 ⋅⋅⋅ = Mn = Mav, and

Eq. (4) leads to

(5)

where M = nMav. By comparing Eq. (5) with the Curie-

Weiss law, , the Curie-Weiss temper-

ature θ is written as

 (6)

In cases when every magnetic ion has the same number

and the same kinds of interactions, the above expression

reduces to the usual form found in the literature. Namely, 

(7)

In what follows, we use Eq. (6) to calculate the Curie-

Weiss temperatures of Fe2SiO4 as a representative example

consisting of nonequivalent magnetic ions. As depicted in

Figure 1, Fe2SiO4 has two kinds of high-spin Fe2+ (S = 2)

ions in a unit cell, namely, the ions 1-4 (unshaded circles)

and 5-8 (shaded circles).7 

By treating each ion as a spin sublattice, we have eight

sublattices. In general, γij = γji. Further, it is deduced from the

connectivity between these ions (Fig. 1) that γ12 = γ34, γ57 =
γ68, 

γ15 = γ25 = γ16 = γ26 = γ37 = γ47 = γ38 = γ48, 

γ17 = γ18 = γ27 = γ28 = γ35 = γ45 = γ36 = γ46, and 

γ13 = γ14 = γ23 = γ24 = γ56 = γ58 = γ67 = γ78 = 0. Thus, 

the θ of Fe2SiO4 is given by

(4γ12 + 16γ15 + 16γ35 + 4γ57). (8a)

It can be deduced from Figure 1 and Eq. (2) that γ12 =

2J12(8/D), γ57 = 4J57(8/D), γ15 = J15(8/D), and γ35 = 2J35(8/D).

Therefore,

(8b)

Table 1 represents the calculated spin exchange constants

(in meV) and Curie-Weiss temperatture θcal (in K) of Fe2SiO4

on the value of Ueff (= 3.6 eV) from our calculation using the

DFT+U method of Dudarev et al.9 The experimental Curie-

Weiss temperature θexp was first reported to be −150 K,10 and

−126 K11 later. Thus Table 1 shows that the Curie-Weiss

temperature is well represented by our equation of 8b for

Fe2SiO4. 

In summary, for a system containing magnetic ions under

nonequivalent local crystal field environments, we derived

the relationship between the Curie-Weiss temperature and

spin exchange constants. We employed the MFT for spin

sublattices in which each spin sublattice has one spin site

and there is no interaction between identical spin sublattices

and introduced the approximation that each spin site leads to

an identical moment.
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Figure 1. Arrangements of the two kinds of the high-spin Fe2+ (S =
2) ions in Fe2SiO4: Fe(1) = unshaded circles, and Fe(2) = shaded
circles. The numbers 1-8 represent the eight Fe atoms that are
present in a chemical unit cell. The different spin exchange paths
are color-coded (see ref. 7).

Table 1. Calculated spin exchange constants (in meV) and Curie-
Weiss temperature (in K) of Fe2SiO4 on Ueff (=3.6 eV) from the
DFT+U calculation

J12 J15 J35 J57 θcal 

-0.79 0.05 -0.67 -1.13 -130


