• Title/Summary/Keyword: spice model

Search Result 202, Processing Time 0.032 seconds

SPICE Model of the Spiral Inductor on Silicon Substrate (실리콘 기판 위의 나선형 인덕터에 대한 SPICE 모델)

  • Kim, Yeong-Seuk;Park, Jong-Wook;Kim, Nam-Soo;Yu, Hyun-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.10
    • /
    • pp.11-16
    • /
    • 2000
  • The SPICE model of the spiral inductor on silicon substrate which can be easily used for the RF IC design has been developed. In this proposed model the equivalent circuit element of the spiral inductor are defined by the layout and process parameters using the user-defined function and subcircuit of the SPICE. The total inductance is calculated using the subcircuit Li for the arbitrary turn i and the subcircuit Mij for two arbitrary turns. The model was verified by comparing the simulated data with the measured s-parameters, total inductance, and quality factor of the spiral inductor fabricated by the CMOS 0.8${\mu}m$ process. The proposed SPICE model of the spiral inductor is scalable and includes the effects of the silicon substrate.

  • PDF

A Study on Improved SPICE MOSFET RF Model Considering Wide Width Effect (Wide Width Effect를 고려하여 개선된 SPICE MOSFET RF Model 연구)

  • Cha, Ji-Yong;Cha, Jun-Young;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this study, the wide width effect that the increasing rate of drain current and the value of cutoff frequency decrease with larger finger number is observed. For modeling this effect, an improved SPICE MOSFET RF model that finger number-independent external source resistance is connected to a conventional BSIM3v3 RF model is developed. Better agreement between simulated and measured drain current and cutoff frequency at different finger number is obtained for the improved model than the conventional one, verifying the accuracy of the improved model for $0.13{\mu}m$ multi-finger MOSFET.

New Approach for Transient Radiation SPICE Model of CMOS Circuit

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Jong-Yeol;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1182-1187
    • /
    • 2013
  • Transient radiation is emitted during a nuclear explosion and causes fatal errors as upset and latch-up in CMOS circuits. This paper proposes the transient radiation SPICE models of NMOS, PMOS, and INVERTER based on the transient radiation analysis using TCAD (Technology Computer Aided Design). To make the SPICE model of a CMOS circuit, the photocurrent in the PN junction of NMOS and PMOS was replaced as current source, and a latch-up phenomenon in the inverter was applied using a parasitic thyristor. As an example, the proposed transient radiation SPICE model was applied to a CMOS NAND circuit. The CMOS NAND circuit was simulated by SPICE and TCAD using the 0.18um CMOS process model parameter. The simulated results show that the SPICE results were similar to the TCAD simulation and the test results of commercial CMOS NAND IC. The simulation time was reduced by 120 times compared to the TCAD simulation.

A Method of Test Case Generation Based on Behavioral Model for Automotive SPICE (Automotive SPICE를 위한 행위 모델 기반의 테스트 케이스 생성 기법)

  • Kim, Choong S.;Yang, Jae-Soo;Park, Young B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.71-77
    • /
    • 2017
  • As the automobile industry has shifted to software, the Automotive SPICE standard has been established to ensure efficient product development process and quality. In the assessment model, the HIS Scope is the minimum standard for small and medium automotive electric companies to meet OEM requirements. However, in order to achieve the HIS Scope, the output of each process stage that meets the verification criteria of Automotive SPICE must be created. In particular, the test phase takes a lot of resources, which is a big burden for small and medium-sized companies. In this paper, we propose a methodology for creating test cases of software integration test phase based on UML sequence diagram, which is a software design phase of Automotive SPICE HIS Scope, by applying behavior model based testing method. We also propose a tool chain for automating the creation process. This will reduce the resources required to create a test case.

  • PDF

Implementation of Stretched-Exponential Time Dependence of Threshold Voltage Shift in SPICE (Stretched-Exponential 형태의 문턱전압 이동 모델의 SPICE구현)

  • Jung, Taeho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2020
  • Threshold voltage shift occurring during operation is implemented in a SPICE simulation tool. Among the shift models the stretched-exponential function model, which is frequently observed from both single-crystal silicon and thin-film transistors regardless of the nature of causes, is selected, adapted to transient simulation, and added to BSIM4 developed by BSIM Research Group at the University of California, Berkeley. The adaptation method used in this research is to select degradation and recovery models based on the comparison between the gate and threshold voltages. The threshold voltage shift is extracted from SPICE transient simulation and shows the stretched-exponential time dependence for both degradation and recovery situations. The implementation method developed in this research is not limited to the stretched-exponential function model and BSIM model. The proposed method enables to perform transient simulation with threshold voltage shift in situ and will help to verify the reliability of a circuit.

Simple SPICE memristor model for neuromorphic system (뉴로모픽 시스템을 위한 간단한 SPICE 멤리스터 모델)

  • Choi, Gyumin;Park, Byeong-Jun;Rue, Gi-Hong;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.261-266
    • /
    • 2021
  • A simple memristor model is proposed for the neuromorphic system in the Simulation Program for Integrated Circuits Emphasis (SPICE). The memristive I-V characteristics with different voltage and frequencies were analyzed. And with the model, we configured a learning and inference system with 4 by 4 memristor array to show the practical use of the model. We examined the applicability by configuring the simplest neuromorphic circuit. The total simulation time for the proposed model was 18% lesser than that for the one-memristor model. When compared with more memristor models in a circuit, the time became even shorter.

A Study on the Applicability of AUTOMOTIVE SPICE in the Railway Software (AUTOMOTIVE SPICE의 철도 소프트웨어 적용성 연구)

  • Shin, Kyung-Ho;Joung, Eui-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1203-1204
    • /
    • 2007
  • In the methods for securing software quality and safety, two approaches - product centered approach and process centered approach - can be suggested. SPICE is a standard for the process improvement and the capability determination, which is planned for securing software quality and safety by the process centered approach. In this paper, general SPICE model, which is presented in ISO/IEC 15504 and Automotive SPICE model for automobile industry are analyzed. For securing railway software quality and safety, appropriate scheme to apply Automotive SPICE to railway software is proposed.

  • PDF

Case study for confidence verification model design of the SPICE assessment (분산분석에 의한 SPICE 심사의 신뢰성 검증 모델 설계의 사례연구)

  • 송기원;박정환;이경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.364-366
    • /
    • 2003
  • 수준 높은 소프트웨어의 품질과 개발, 유지보수 비용의 최소화, 제품 출하시간의 단축을 위하여 소프트웨어 프로세스에 대한 예측, 통제 가능성을 증가시키기 위함이다. 기업이 최고도의 높은 수준에 도달하기 의해서는 정량적인 모델에 의한 프로젝트 관리가 필요하다. 따라서 기업들은 SPICE/CMM와 같은 표준을 사용하여 조직의 프로세스 능력 수준을 평가하고 수준향상을 꾀한다. 조직의 프로세스의 능력을 평가하고 수준향상을 위해서는 신뢰성 있는 SPICE 심사의 심사결과에 대한 객관적인 신뢰성의 보장과 좀더 적은 비용으로 프로세스의 수준향상을 할 수 있는 방법이 필요하다. 본 논문에서는 SPICE 심사의 신뢰성을 얻기 위해 CMM/KPA 설문서를 통해 심사하고 SPICE심사의 결과를 비교 분석하여 SPICE심사의 신뢰성을 검증한다. 또한 이를 기반으로 CMM/KPA 설문서의 정량적인 모델을 제안함으로서 좀더 적은 비용과 시간으로 SPICE 심사의 결과와 같은 효과를 얻을 수 있게 한다.

  • PDF

A Study on the SPICE Model Parameter Extraction Method for the DC Model of the High Voltage MOSFET (High Voltage MOSFET의 DC 해석 용 SPICE 모델 파라미터 추출 방법에 관한 연구)

  • Lee, Un-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2281-2285
    • /
    • 2011
  • An algorithm for extracting SPICE MOS level 2 model parameters for the high voltage MOSFET DC model is proposed. The optimization method for analyzing the nonlinear data of the current-voltage curve using the Gauss-Newton algorithm is proposed and the pre-process step for calculating the threshold voltage and the mobility is proposed. The drain current obtained from the proposed method shows the maximum relative error of 5.6% compared with the drain current of 2-dimensional device simulation for the high voltage MOSFET.

A Study of CMOS Device Latch-up Model with Transient Radiation (과도방사선에 의한 CMOS 소자 Latch-up 모델 연구)

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Min-Su;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.422-426
    • /
    • 2012
  • Transient radiation is emitted during a nuclear explosion. Transient radiation causes a fatal error in the CMOS circuit as a Upset and Latch-up. In this paper, transient radiation NMOS, PMOS, INVERTER SPICE model was proposed on the basisi of transient radiation effects analysis using TCAD(Technology Computer Aided Design). Photocurrent generated from the MOSFET internal PN junction was expressed to the current source and Latch-up phenomenon in the INVERTER was expressed to parasitic thyristor for the transient radiation SPICE model. For example, the proposed transient radiation SPICE model was applied to CMOS NAND circuit. SPICE simulated characteristics were similar to the TCAD simulation results. Simulation time was reduced to 120 times compared to TCAD simulation.