• Title/Summary/Keyword: space of operator valued measures

Search Result 11, Processing Time 0.024 seconds

A NOTE ON RADON-NIKODYM THEOREM FOR OPERATOR VALUED MEASURES AND ITS APPLICATIONS

  • Ahmed, Nasiruddin
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.285-295
    • /
    • 2013
  • In this note we present sufficient conditions for the existence of Radon-Nikodym derivatives (RND) of operator valued measures with respect to scalar measures. The RND is characterized by the Bochner integral in the strong operator topology of a strongly measurable operator valued function with respect to a nonnegative finite measure. Using this result we also obtain a characterization of compact sets in the space of operator valued measures. An extension of this result is also given using the theory of Pettis integral. These results have interesting applications in the study of evolution equations on Banach spaces driven by operator valued measures as structural controls.

A GENERALIZED SEQUENTIAL OPERATOR-VALUED FUNCTION SPACE INTEGRAL

  • Chang, Kun-Soo;Kim, Byoung-Soo;Park, Cheong-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.73-86
    • /
    • 2003
  • In this paper, we define a generalized sequential operator-valued function space integral by using a generalized Wiener measure. It is an extention of the sequential operator-valued function space integral introduced by Cameron and Storvick. We prove the existence of this integral for functionals which involve some product Borel measures.

AN OPERATOR VALUED FUNCTION SPACE INTEGRAL OF FUNCTIONALS INVOLVING DOUBLE INTEGRALS

  • Kim, Jin-Bong;Ryu, Kun-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.293-303
    • /
    • 1997
  • The existence theorem for the operator valued function space integral has been studied, when the wave function was in $L_1(R)$ class and the potential energy function was represented as a double integra [4]. Johnson and Lapidus established the existence theorem for the operator valued function space integral, when the wave function was in $L_2(R)$ class and the potential energy function was represented as an integral involving a Borel measure [9]. In this paper, we establish the existence theorem for the operator valued function we establish the existence theorem for the operator valued function space integral as an operator from $L_1(R)$ to $L_\infty(R)$ for certain potential energy functions which involve double integrals with some Borel measures.

  • PDF

Existence theorems of an operator-valued feynman integral as an $L(L_1,C_0)$ theory

  • Ahn, Jae-Moon;Chang, Kun-Soo;Kim, Jeong-Gyoo;Ko, Jung-Won;Ryu, Kun-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.317-334
    • /
    • 1997
  • The existence of an operator-valued function space integral as an operator on $L_p(R) (1 \leq p \leq 2)$ was established for certain functionals which involved the Labesgue measure [1,2,6,7]. Johnson and Lapidus showed the existence of the integral as an operator on $L_2(R)$ for certain functionals which involved any Borel measures [5]. J. S. Chang and Johnson proved the existence of the integral as an operator from L_1(R)$ to $C_0(R)$ for certain functionals involving some Borel measures [3]. K. S. Chang and K. S. Ryu showed the existence of the integral as an operator from $L_p(R) to L_p'(R)$ for certain functionals involving some Borel measures [4].

  • PDF

INTEGRAL OPERATORS FOR OPERATOR VALUED MEASURES

  • Park, Jae-Myung
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.331-336
    • /
    • 1994
  • Let $P_{0}$ be a $\delta$-ring (a ring closed with respect to the forming of countable intersections) of subsets of a nonempty set $\Omega$. Let X and Y be Banach spaces and L(X, Y) the Banach space of all bounded linear operators from X to Y. A set function m : $P_{0}$ longrightarrow L(X, Y) is called an operator valued measure countably additive in the strong operator topology if for every x $\epsilon$ X the set function E longrightarrow m(E)x is a countably additive vector measure. From now on, m will denote an operator valued measure countably additive in the strong operator topology.(omitted)

  • PDF

BARRELLEDNESS OF SOME SPACES OF VECTOR MEASURES AND BOUNDED LINEAR OPERATORS

  • FERRANDO, JUAN CARLOS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1579-1586
    • /
    • 2015
  • In this paper we investigate the barrellednes of some spaces of X-valued measures, X being a barrelled normed space, and provide examples of non barrelled spaces of bounded linear operators from a Banach space X into a barrelled normed space Y, equipped with the uniform convergence topology.

STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

  • Nowak, Marian
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.177-190
    • /
    • 2015
  • Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{rc}(X,E)$ be the Banach space of all continuous functions $f:X{\rightarrow}E$ such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T:C_{rc}(X,E){\rightarrow}F$. We characterize continuous operators from $C_{rc}(X,E)$, provided with the strict topologies ${\beta}_z(X,E)$ ($z={\sigma},{\tau}$) to F, in terms of their representing operator-valued measures.

SEQUENCES IN THE RANGE OF A VECTOR MEASURE

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2007
  • We prove that every strong null sequence in a Banach space X lies inside the range of a vector measure of bounded variation if and only if the condition $\mathcal{N}_1(X,{\ell}_1)={\Pi}_1(X,{\ell}_1)$ holds. We also prove that for $1{\leq}p<{\infty}$ every strong ${\ell}_p$ sequence in a Banach space X lies inside the range of an X-valued measure of bounded variation if and only if the identity operator of the dual Banach space $X^*$ is ($p^{\prime}$,1)-summing, where $p^{\prime}$ is the conjugate exponent of $p$. Finally we prove that a Banach space X has the property that any sequence lying in the range of an X-valued measure actually lies in the range of a vector measure of bounded variation if and only if the condition ${\Pi}_1(X,{\ell}_1)={\Pi}_2(X,{\ell}_1)$ holds.

  • PDF

WEAK CONVERGENCE THEOREMS IN FEYNMAN'S OPERATIONAL CALCULI : THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

  • Ahn, Byung Moo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.531-541
    • /
    • 2012
  • Feynman's operational calculus for noncommuting operators was studied by means of measures on the time inteval. And various stability theorems for Feynman's operational calculus were investigated. In this paper we see the time-dependent stability properties when the operator-valued functions take their values in a separable Hilbert space.