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CONVERGENCE THEOREMS IN MEASURES FOR
THE OPERATOR-VALUED FEYNMAN INTEGRAL

Byung Moo AHN

ABSTRACT. The existence of the operator-valued Feynman integral
was established when a Wiener functional is given by a Fourier
transform of complex Borel measures. In this paper, we investigate
the stability of the Feynman integral with respect to the measures.

1. Introduction

Let C, C, and (fl+ be the complex numbers, the complex numbers
with positive real part, and the nonzero complex numbers with nonneg-
ative real part, respectively. For a given ¢ > 0 and an integer N > 1
let C* be the space of R¥-valued continuous functions x on [0,t]. C§
denotes the Wiener space, that is, the set of all z € C* which vanish at
0. m denotes Wiener measure on C§.

Let F be a function from C? to C. Given A > 0, ¢ € L? (RV) and
£ e RV, let

M) EEWIE = [ POt + g Ealt) + O dmio).

DEFINITION. The operator-valued function space integral K (F') ex-
ists for A > 0 if (1.1) defines K,(F) as a bounded linear operator on
L?(RY). If, in addition, the operator-valued function K (F), as a func-
tion of A, has an extension to an analytic function in C, and a strongly
continuous function in C,, we say that K (F) exists for A € C,.. When
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) is purely imaginary, K\(F) is called the operator-valued Feynman
integral of F.

For s >0, A € C; and ¢ € L*(RYN), let

(exp[—s(Ho/M)]¥)(£)
(1.2) ( A )%

2ms

y P(u) exp ( - —)\—HU—Z;—EE) du

The integral in (1.2) exists as an ordinary Lebesgue integral for A € C,,
but, when A is purely imaginary and v is not integrable, the integral
should be interpreted in the mean as in the theory of the Fourier-
Plancherel transform.

M (0,t) will denote the space of complex Borel measures n on (0,1).
Then every measure n € M(0,t) has a unique decomposition 7 = p+nq4
into a continuous part u and a discrete part ng [8]. The case where 7y has
a finite support is most likely to be of interest. So, let ng = Z?:l w;by,
where d,, is as usual the Dirac measure at 7; € (0,¢), 0<7 <:--<
™ <tandw; € Cfor j=1,2,--- ,h.

Let Loo1,n be the space of C-valued, Borel measurable functions 6 on
(0,¢) x RY such that [8]looty == fig ) 1605, Moo dlnl(s) < oo.

Let M(C) be the space of complex Borel measures on C. The Fourier
transform of v € M(C) is the function © defined by &(u) = [, e™™* dv(v)
ueC.

Consider the functional for v € M(C), 8 € L1, and n € M(0,1).

(1.3) F(z) = ,9( o 8(s, z(s)) dn(s)>, z e Ct

Then, the following lemmas are contained in [2].

LEMMA 1. K\ (F) exists for A > 0.

LEMMA 2. K,(F') exists for A € C. and is given by the generalized
Dyson series, provided that v € M(C) satisfies

/eneuml;m dJv|(u) < oo
C
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i.e., for all A € C.., the following expansion of K A(F') holds:

i wgl e wgh
= ! —
K\ (F) Zn.an > 0l gy
n=0 qo+-+gn=n
X Z LoLy---Lpdu(sy) - du(sq,)
ki+--+kni1=q0 Dggiky e kpg
where qo, -+, qn, k1, -+, kn+1 are nonnegative integers,
Aro;kl,“',th = {(317 T ?SQO) € (O’t)qo (0 <s < <y

LT < Spy1 <o < Skytky T2 < Spydkotr1 < oo

< Skypothn < Th < Skyfoodhptl < 00 < Sgp <t}
and, for (81’ U ’SQO) € AQO;kl,--- Kent andr € {0’ 1. ’h}

Ly =[0(r,)Jire=Crirrirns =) NG (s )

e_(5k1+'“+kr+2——sk1+-~~+kr+1)(HO/A)Q(skl_’_.“_*_k o) -

0(8k1+'--+kr+1)6_(TT+1_Sk1+"'+kr+1 J(Ho/X)

and an, = 2 [o(—i)"u" dv(u).
We use the conventions 79 = 0,741 =t and [f(7p)]?* = 1.

2. Stability theorems

We begin with a lemma which is easily proved and is essentially con-
tained in [1].

LeMMA 3. Let {F,(z)} be a sequence of Borel measurable func-
tionals such that |F,,(z)] < B for some constant B > 0 and for all
n=1,2,3,--- . Further suppose that for every A > 0

F,(A\7z+&) > FOA 2z+¢&) as n— oo
for m x Leb. — a.e. (z,&). Then for every A > 0

K\(F,) — K\(F) strongly as n — oco.
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We consider stability in the measure 7 first. Let n, n,, n=1, 2,---
be in M(0,t). We say that 7, converges weakly to n provided that

/( | pdm) ~ [ s an)

0,t)

for every bounded continuous function b on (0,t).

THEOREM 1. Let 8 be a continuous function bounded by a constant
C on all of (0,t) x RN. Let n, n,, n=1,2,--- be in M(0,t). Assume
that

(2.1) nn — N weakly as n — o0o.

Let F be defined as (1.3) and F, be defined as (1.3) except with n
replaced by n,. Then for all A > 0, K)\(F,) — Kx(F) strongly as
n — 00.

Further, if [ ellllotn ! dly|(u) < 0o and if there exists Ny < oo such
that

(2.2) /ellellwlmnlul dlv|(u) < Ny
C

foralln=1,2,---, then for A € C.,
(2.3) K\(F,) = Kx\(F) strongly as n — oo.

Further, the convergence in (2.3) is uniform on all compact subsets of
Cst.

PROOF. Let A > 0 and ¢ € RY be given. Given z € C{, the function
0(s,\"1/2 z(s) +¢&) is bounded by C and is continuous as a function of
s. Hence, by (2.1),

[ 86 as) + ) dma(s) > [ 65,47 2(s) +6) ds).
(0,¢) (0,t)

Since 7 is continuous
(2.4) o[ 06,37 2a(s) + €) dnn(s)
(0,%)

—

Ay

0(s, A" %z (s) + £) dn(s)
(0,t)
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ie. Fy(A\~12z 4+ ¢) = F(A~1/2z + ¢). Note that

(25) E@i=]( [ o.0am0)]

< [l

forallz € C* and all n = 1,2,---. In a view of (2.4), (2.5) and Lemma
3 yields for all A > 0,

(2.6) K, (F,) — K\(F) strongly as n — oc.

Let ¢ € L?(RY). We know from Lemma 2 that K, (F,)(x)) and
K)\(F)(¢) are analytic for A € C, and from the norm estimate [2],

IEAE)9] < /C elllcsens 41 g1 () 1]
Hence

(2.7) KX ()]l < No 9]l

forall A\ e C, and foralln=1,2,.-. .

Hence, by (2.6) and (2.7), Vitali’s theorem for operator-valued func-
tion [4, Theorem 3.14.1] assures us that K (Fy,) — K (F') uniformly on
all compact subsets of C. O

Under the assumption 7, — 7 in norm, we can show that K (F,) —
K, (F) in the norm topology for all A € C,..

THEOREM 2. Assume thatn, — 1 innormasn — oo (i.e. ||n,—n| —
0 as n — o0). Then, under the hypotheses of Theorem 1,

(2.8) K, (F,) — Kx\(F) in the operator norm topology

as m — oo uniformly in A on the all compact subsets in C,. Moreover,
for all A > 0 we have the norm estimate

(2.9) KA (Fn) = Kx(F)| < Mo |7 — nll;

where M = |||l and My = 2M [ |u| d|v|(u).
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ProoF. Clearly for all A >0, z € C§ and ¢ € RY

AT () + Ydm(s)~ | 052 als) +) dn(s)|

o
< M |7 — nll.

Then, for A > 0 and £ € RY,

oo [ f et 4 6000)]

(0,

~ep [ [ 06 A722() + € dnte)|
< 2ful M [jnn — 7

since |e™*" — e~ | < 2fu||v — | for u,v,v’ € C. Thus
| /C exp |~ iu( /( o)+ dnn(s))] dv(w)
- /Cexp [— iu(/(o 5 8(s, \"1/2x(s) + €) dn(s))] dy(u)4

< oM /C ful div|(w) 1nn = 7
= M ||nn — 1]l
So,

| /C exp [ /(O,t)o(s,xl/%(s) +)da(s))] d(w)
x (A2 (t) + €)
— [[exp [ in /( BN (s) + 9 n(s) | av(w
x $(\ M 2a(t) + ¢)
< Mol — 1l [p(X"2(t) + )|
for all ¢ € L2(RY). Hence

(K (Fr)¥)(€) — (KA (F))(E)]
< Mo [ns — nll (e Ho /D jp))(€)
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and thus || K (F,)y — Kx(F)Y|| < My |9, —nl| ||¥]]. Since v is arbitrary
in L2(RY), (2.8) and (2.9) follow for all A > 0.

By Lemma 2, K)(F,) and K(F) are analytic in C;. By (2.7)
|KA(Fp)l} < No for all A € C; and n = 1,2,--- where Ny is given
by (2. 2) Also for A > 0, K\(F,,) — K (F') in the operator norm topol-
ogy. Hence Vitali’s theorem gives the result A € C,. O

We next turn to the question of stability in the measure v. Let
V,Up,m = 1,2,--- be in M(C). Of course, v, converges weakly to v

provided that
[ ¢t~ [ swviw
C C

for every bounded continuous function ¢ on C.

THEOREM 3. Let 0 € Loy, and let v,vp,n = 1,2,--- be in M(C).
Assume that v, — v weakly. Let F,, be defined as in (1.3) except with
v replaced by v,. Then for every A > 0,

Ky)(F,) — K\(F) strongly as n — oo.

Further, if [, elfllormivl dly|(u) < 0o and if there exists N; < oo such
that fce”9”°°1:"|“| dlvp|(u) < Ny for allm =1,2,---, then for A € C,.

(2.10) K\ (F,) — K\(F) strongly as n — oo.

Further, the convergence in (2.10) is inform on all compact subsets of

C..

PRrOOF. Let A >0, z € C§ and &£ € RN be given. The function e**?
is bounded and continuous as a function of u. Hence,

/ o f(g.) 05 A"/ 2(s)+8) dn(3) dun ()
C
N / e_iuf(o,t)9(55/\_1/2z(3)+£) dn(s) dv(u),
e, F,(\~ 1/25B + &) — F(A~1/2z + ¢). Note that for all z € C* and all

1,2,
B = [on( [ dta,(e)dnts)|

<llwnll <d
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where d = sup, ||v.||, a finite number [7, Theorem 9.3.5]. Hence by
Lemma 3, K)(F,) — Kx(F) strongly as n — oc.

Let ¥ € L2(RY), then K (F,)% and K (F)v are analytic for A € C,.
and [|Kx(Fu)pll < Jg elffo=snll dlu, |(u) [[9]]. Hence

(2.11) [EA(Fo )yl < Nyl
for all A € C, and for all n = 1,2,--- . Hence, Vitali’s theorem yields
the result as in the proof of Theorem 1. |

THEOREM 4. Assume that v,, — v in norm. Then, the under the hy-
potheses of Theorem 3, K (F,,) — K,(F) in the operator norm topology
uniformly in A on all compact subsets of C.. Moreover, for all A > 0 we
have the norm estimate ||[K)(F,,) — Kx(F)|| < |lvn — V|, n=1,2,---.

Proor. Clearly for all A > 0,z € C} and £ € RN

!/e—mf(o,t)9(3,,\—1/zm(s)+5)d7,(s) dvn ()
c

_/e"mf(o,t) 0(s: 272 (s)+€) dn(s) dv(u)
C

S “Vn - V“

Then, for A > 0, z € C} and ¥ € L2(RY)

‘/e_wf(o,t) (s, A" 22(s)+€) dn(s) dv (1) YA 22(t) + £)
C
_/e_iufm’t)9(s,>\_1/21(8)+5)d”(s) dv(u) p(A"V22(t) + €)
C
< v = vl (A 22() +€)|.
Hence

(A (Fa)$)(€) — (Ka(F)$(0)]
< / lvm ~ il (A~ 2a(t) + £)| dm(z)
Co
= |lvn — vl (e7"H A ) (€)
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and thus
[ KA (Fn)y — EA(E)[ < (lvn — v 4]

Since ¥ is arbitrary in L2(RY™), ||Kx(Fy) — Kx(F)|| < vn — v, n =
1,2,--+ and K (F,) — Kx(F') in the operator norm topology for A > 0.

By [2], K\(F,) and K (F) are analytic in C1. By (2.11), |[Kx(Fp)]| <
Niforall A\ e C, and n=1,2,-.. . Hence the conclusion follows as in
the proof in Theorem 2. O

References

[1] B. M. Ahn, A bounded convergence theorem for the operator-valued Feynman
integral, Bull. Korean Math. Soc. 33 (1996), no. 3, 465-475.

2] , A class of the operator-valued Feynman integral, J. Korean Math. Soc.
34 (1997), no. 3, 569-579.

[3] R. H. Cameron and D. A. Stovick, An operator valued function space integral
and a related integral equations, J. Math. Mech. 18 (1968), 517-552.

[4] E. Hille and R. S. Phillips, Functional analysis and Semi-groups, vol. XXXI rev.
ed, Amer. Math. Soc. Colloq., Providence, Amer. Math. Soc., 1957.

[6] G. W. Johnson and M. L. Lapidus, Generalized Dyson Series, generalized Feyn-
man diagrams, Feynman integral, and Feynman’s operational calculus, Mem.
Amer. Math. Soc. 62 (1986), no. 351, 1-78.

[6] G. W. Johnson and D. L. Skoug, Stability Theorems for the Feynman Integral,

Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II-Numero

8 (1985), 361-367.

R. Larsen, Functional Analysis, Marcel Dekker, New York, 1973.

M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. I, Rev.

and enl. ed., Academic Press, New York, 1980.

[9] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

©=3

Department of Mathematics
Soonchunhyang University

Asan, Chungnam 336-745, Korea
E-mail: Anbymo@sch.ac.kr



