CONVERGENCE THEOREMS IN MEASURES FOR THE OPERATOR-VALUED FEYNMAN INTEGRAL

Byung Moo Ahn

ABSTRACT. The existence of the operator-valued Feynman integral was established when a Wiener functional is given by a Fourier transform of complex Borel measures. In this paper, we investigate the stability of the Feynman integral with respect to the measures.

1. Introduction

Let \mathbb{C} , \mathbb{C}_+ and \mathbb{C}_+ be the complex numbers, the complex numbers with positive real part, and the nonzero complex numbers with nonnegative real part, respectively. For a given t>0 and an integer $N\geq 1$ let C^t be the space of \mathbb{R}^N -valued continuous functions x on [0,t]. C_0^t denotes the Wiener space, that is, the set of all $x\in C^t$ which vanish at 0. m denotes Wiener measure on C_0^t .

Let F be a function from C^t to \mathbb{C} . Given $\lambda > 0$, $\psi \in L^2(\mathbb{R}^N)$ and $\xi \in \mathbb{R}^N$, let

$$(1.1) \qquad (K_{\lambda}(F)\psi)(\xi) = \int_{C_0^t} F(\lambda^{-\frac{1}{2}}x + \xi)\psi(\lambda^{-\frac{1}{2}}x(t) + \xi) \, dm(x).$$

DEFINITION. The operator-valued function space integral $K_{\lambda}(F)$ exists for $\lambda > 0$ if (1.1) defines $K_{\lambda}(F)$ as a bounded linear operator on $L^2(\mathbb{R}^N)$. If, in addition, the operator-valued function $K_{\lambda}(F)$, as a function of λ , has an extension to an analytic function in \mathbb{C}_+ and a strongly continuous function in $\tilde{\mathbb{C}}_+$, we say that $K_{\lambda}(F)$ exists for $\lambda \in \tilde{\mathbb{C}}_+$. When

Received February 19, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 28C20.

Key words and phrases: operator-valued function space integral, operator-valued Feynman integral.

 λ is purely imaginary, $K_{\lambda}(F)$ is called the operator-valued Feynman integral of F.

For s > 0, $\lambda \in \tilde{\mathbb{C}}_+$ and $\psi \in L^2(\mathbb{R}^N)$, let

(1.2)
$$(\exp[-s(H_0/\lambda)]\psi)(\xi)$$

$$= \left(\frac{\lambda}{2\pi s}\right)^{\frac{N}{2}} \int_{\mathbb{R}^N} \psi(u) \exp\left(-\frac{\lambda \|u - \xi\|^2}{2s}\right) du.$$

The integral in (1.2) exists as an ordinary Lebesgue integral for $\lambda \in \mathbb{C}_+$, but, when λ is purely imaginary and ψ is not integrable, the integral should be interpreted in the mean as in the theory of the Fourier-Plancherel transform.

M(0,t) will denote the space of complex Borel measures η on (0,t). Then every measure $\eta \in M(0,t)$ has a unique decomposition $\eta = \mu + \eta_d$ into a continuous part μ and a discrete part η_d [8]. The case where η_d has a finite support is most likely to be of interest. So, let $\eta_d = \sum_{j=1}^h \omega_j \delta_{\tau_j}$ where δ_{τ_j} is as usual the Dirac measure at $\tau_j \in (0,t)$, $0 < \tau_1 < \cdots < \tau_h < t$ and $\omega_j \in \mathbb{C}$ for $j=1,2,\cdots,h$.

Let $L_{\infty 1;\eta}$ be the space of \mathbb{C} -valued, Borel measurable functions θ on $(0,t)\times\mathbb{R}^N$ such that $\|\theta\|_{\infty 1;\eta}:=\int_{(0,t)}\|\theta(s,\cdot)\|_{\infty}\ d|\eta|(s)<\infty$.

Let $M(\mathbb{C})$ be the space of complex Borel measures on \mathbb{C} . The Fourier transform of $\nu \in M(\mathbb{C})$ is the function $\hat{\nu}$ defined by $\hat{\nu}(u) = \int_{\mathbb{C}} e^{-iuv} d\nu(v)$ $u \in \mathbb{C}$.

Consider the functional for $\nu \in M(\mathbb{C})$, $\theta \in L_{\infty 1;\eta}$ and $\eta \in M(0,t)$.

(1.3)
$$F(x) = \hat{\nu} \Big(\int_{(0,t)} \theta(s, x(s)) \, d\eta(s) \Big), \qquad x \in C^t.$$

Then, the following lemmas are contained in [2].

LEMMA 1. $K_{\lambda}(F)$ exists for $\lambda > 0$.

LEMMA 2. $K_{\lambda}(F)$ exists for $\lambda \in \mathbb{C}_{+}$ and is given by the generalized Dyson series, provided that $\nu \in M(\mathbb{C})$ satisfies

$$\int_{\mathbb{C}} e^{\|\theta\|_{\infty 1;\eta} |u|} \, d|\nu|(u) < \infty$$

i.e., for all $\lambda \in \tilde{\mathbb{C}}_+$, the following expansion of $K_{\lambda}(F)$ holds:

$$K_{\lambda}(F) = \sum_{n=0}^{\infty} n! a_n \sum_{q_0 + \dots + q_h = n} \frac{\omega_1^{q_1} \cdots \omega_h^{q_h}}{q_1! \cdots q_h!} \times \sum_{k_1 + \dots + k_{h+1} = q_0} \int_{\Delta_{q_0; k_1, \dots, k_{h+1}}} L_0 L_1 \cdots L_h \, d\mu(s_1) \cdots d\mu(s_{q_0})$$

where $q_0, \dots, q_h, k_1, \dots, k_{h+1}$ are nonnegative integers,

$$\Delta_{q_0;k_1,\cdots,k_{h+1}} = \{ (s_1,\cdots,s_{q_0}) \in (0,t)^{q_0} : 0 < s_1 < \cdots < s_{k_1}$$

$$< \tau_1 < s_{k_1+1} < \cdots < s_{k_1+k_2} < \tau_2 < s_{k_1+k_2+1} < \cdots$$

$$< s_{k_1+\cdots+k_h} < \tau_h < s_{k_1+\cdots+k_h+1} < \cdots < s_{q_0} < t \}$$

and, for
$$(s_1, \dots, s_{q_0}) \in \Delta_{q_0; k_1, \dots, k_{h+1}}$$
 and $r \in \{0, 1, \dots, h\}$

$$L_{r} = [\theta(\tau_{r})]^{q_{r}} e^{-(s_{k_{1}} + \dots + k_{r} + 1 - \tau_{r})(H_{0}/\lambda)} \theta(s_{k_{1}} + \dots + k_{r} + 1)$$

$$e^{-(s_{k_{1}} + \dots + k_{r} + 2 - s_{k_{1}} + \dots + k_{r} + 1)(H_{0}/\lambda)} \theta(s_{k_{1}} + \dots + k_{r} + 2) \cdots$$

$$\theta(s_{k_{1}} + \dots + k_{r} + 1) e^{-(\tau_{r+1} - s_{k_{1}} + \dots + k_{r} + 1)(H_{0}/\lambda)}$$

and
$$a_n = \frac{1}{n!} \int_{\mathbb{C}} (-i)^n u^n d\nu(u)$$
.

We use the conventions $\tau_0 = 0$, $\tau_{h+1} = t$ and $[\theta(\tau_0)]^{q_0} = 1$.

2. Stability theorems

We begin with a lemma which is easily proved and is essentially contained in [1].

LEMMA 3. Let $\{F_n(x)\}$ be a sequence of Borel measurable functionals such that $|F_n(x)| \leq B$ for some constant B > 0 and for all $n = 1, 2, 3, \cdots$. Further suppose that for every $\lambda > 0$

$$F_n(\lambda^{-\frac{1}{2}}x+\xi) \to F(\lambda^{-\frac{1}{2}}x+\xi)$$
 as $n \to \infty$

for $m \times Leb. - a.e.(x, \xi)$. Then for every $\lambda > 0$

$$K_{\lambda}(F_n) \to K_{\lambda}(F)$$
 strongly as $n \to \infty$.

We consider stability in the measure η first. Let η , η_n , $n=1, 2, \cdots$ be in M(0,t). We say that η_n converges weakly to η provided that

$$\int_{(0,t)} b(u) d\eta_n(u) \to \int_{(0,t)} b(u) d\eta(u)$$

for every bounded continuous function b on (0, t).

THEOREM 1. Let θ be a continuous function bounded by a constant C on all of $(0,t) \times \mathbb{R}^N$. Let η , η_n , $n = 1, 2, \cdots$ be in M(0,t). Assume that

(2.1)
$$\eta_n \to \eta$$
 weakly as $n \to \infty$.

Let F be defined as (1.3) and F_n be defined as (1.3) except with η replaced by η_n . Then for all $\lambda > 0$, $K_{\lambda}(F_n) \to K_{\lambda}(F)$ strongly as $n \to \infty$.

Further, if $\int_{\mathbb{C}} e^{\|\theta\|_{\infty^{1:\eta}}|u|} d|\nu|(u) < \infty$ and if there exists $N_0 < \infty$ such that

(2.2)
$$\int_{\mathbb{C}} e^{\|\theta\|_{\infty 1:\eta_n}|u|} \, d|\nu|(u) < N_0$$

for all $n = 1, 2, \dots$, then for $\lambda \in \mathbb{C}_+$,

(2.3)
$$K_{\lambda}(F_n) \to K_{\lambda}(F)$$
 strongly as $n \to \infty$.

Further, the convergence in (2.3) is uniform on all compact subsets of \mathbb{C}_+ .

PROOF. Let $\lambda > 0$ and $\xi \in \mathbb{R}^N$ be given. Given $x \in C_0^t$, the function $\theta(s, \lambda^{-1/2} | x(s) + \xi)$ is bounded by C and is continuous as a function of s. Hence, by (2.1),

$$\int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta_n(s) \to \int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta(s).$$

Since $\hat{\nu}$ is continuous

(2.4)
$$\hat{\nu} \left(\int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta_n(s) \right)$$

$$\to \hat{\nu} \left(\int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta(s) \right)$$

i.e. $F_n(\lambda^{-1/2}x+\xi) \to F(\lambda^{-1/2}x+\xi)$. Note that

(2.5)
$$|F_n(x)| = \left| \hat{\nu} \left(\int_{(0,t)} \theta(s,x) \, d\eta_n(s) \right) \right|$$

$$\leq \|\nu\|$$

for all $x \in C^t$ and all $n = 1, 2, \cdots$. In a view of (2.4), (2.5) and Lemma 3 yields for all $\lambda > 0$,

(2.6)
$$K_{\lambda}(F_n) \to K_{\lambda}(F)$$
 strongly as $n \to \infty$.

Let $\psi \in L^2(\mathbb{R}^N)$. We know from Lemma 2 that $K_{\lambda}(F_n)(\psi)$ and $K_{\lambda}(F)(\psi)$ are analytic for $\lambda \in \mathbb{C}_+$ and from the norm estimate [2],

$$||K_{\lambda}(F_n)\psi|| \leq \int_{\mathbb{C}} e^{||\theta||_{\infty 1;\eta_n}|u|} d|\nu|(u) ||\psi||.$$

Hence

$$(2.7) $||K_{\lambda}(F_n)\psi|| \leq N_0 ||\psi||$$$

for all $\lambda \in \mathbb{C}_+$ and for all $n = 1, 2, \cdots$.

Hence, by (2.6) and (2.7), Vitali's theorem for operator-valued function [4, Theorem 3.14.1] assures us that $K_{\lambda}(F_n) \to K_{\lambda}(F)$ uniformly on all compact subsets of \mathbb{C}_+ .

Under the assumption $\eta_n \to \eta$ in norm, we can show that $K_{\lambda}(F_n) \to K_{\lambda}(F)$ in the norm topology for all $\lambda \in \mathbb{C}_+$.

THEOREM 2. Assume that $\eta_n \to \eta$ in norm as $n \to \infty$ (i.e. $||\eta_n - \eta|| \to 0$ as $n \to \infty$). Then, under the hypotheses of Theorem 1,

(2.8)
$$K_{\lambda}(F_n) \to K_{\lambda}(F)$$
 in the operator norm topology

as $n \to \infty$ uniformly in λ on the all compact subsets in \mathbb{C}_+ . Moreover, for all $\lambda > 0$ we have the norm estimate

where $M = \|\theta\|_{\infty}$ and $M_0 = 2M \int_{\mathbb{C}} |u| d|\nu|(u)$.

PROOF. Clearly for all $\lambda > 0$, $x \in C_0^t$ and $\xi \in \mathbb{R}^N$

$$\left| \int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta_n(s) - \int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta(s) \right|$$

$$\leq M \, \|\eta_n - \eta\|.$$

Then, for $\lambda > 0$ and $\xi \in \mathbb{R}^N$,

$$\left| \exp\left[-iu\left(\int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta_n(s) \right) \right] \right|$$
$$- \exp\left[-iu\left(\int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta(s) \right) \right] \right|$$
$$\leq 2|u| M \|\eta_n - \eta\|$$

since $|e^{-iuv} - e^{-iuv'}| \le 2|u||v - v'|$ for $u, v, v' \in \mathbb{C}$. Thus

$$\begin{split} & \Big| \int_{\mathbb{C}} \exp \Big[-iu \Big(\int_{(0,t)} \theta(s,\lambda^{-1/2}x(s) + \xi) \, d\eta_n(s) \Big) \Big] \, d\nu(u) \\ & - \int_{\mathbb{C}} \exp \Big[-iu \Big(\int_{(0,t)} \theta(s,\lambda^{-1/2}x(s) + \xi) \, d\eta(s) \Big) \Big] \, d\nu(u) \Big| \\ & \leq 2M \int_{\mathbb{C}} |u| \, d|\nu|(u) \, \, \|\eta_n - \eta\| \\ & = M_0 \, \|\eta_n - \eta\|. \end{split}$$

So,

$$\left| \int_{\mathbb{C}} \exp\left[-iu \left(\int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta_n(s) \right) \right] d\nu(u) \right.$$

$$\times \psi(\lambda^{-1/2} x(t) + \xi)$$

$$- \int_{\mathbb{C}} \exp\left[-iu \left(\int_{(0,t)} \theta(s, \lambda^{-1/2} x(s) + \xi) \, d\eta(s) \right) \right] d\nu(u)$$

$$\times \psi(\lambda^{-1/2} x(t) + \xi) \Big|$$

$$\leq M_0 \|\eta_n - \eta\| \left| \psi(\lambda^{-1/2} x(t) + \xi) \right|$$

for all $\psi \in L^2(\mathbb{R}^N)$. Hence

$$|(K_{\lambda}(F_n)\psi)(\xi) - (K_{\lambda}(F)\psi)(\xi)|$$

$$\leq M_0 \|\eta_n - \eta\| (e^{-t(H_0/\lambda)}|\psi|)(\xi)$$

and thus $||K_{\lambda}(F_n)\psi - K_{\lambda}(F)\psi|| \le M_0 ||\eta_n - \eta|| ||\psi||$. Since ψ is arbitrary in $L^2(\mathbb{R}^N)$, (2.8) and (2.9) follow for all $\lambda > 0$.

By Lemma 2, $K_{\lambda}(F_n)$ and $K_{\lambda}(F)$ are analytic in \mathbb{C}_+ . By (2.7) $||K_{\lambda}(F_n)|| < N_0$ for all $\lambda \in \mathbb{C}_+$ and $n = 1, 2, \cdots$ where N_0 is given by (2.2). Also for $\lambda > 0$, $K_{\lambda}(F_n) \to K_{\lambda}(F)$ in the operator norm topology. Hence Vitali's theorem gives the result $\lambda \in \mathbb{C}_+$.

We next turn to the question of stability in the measure ν . Let $\nu, \nu_n, n=1,2,\cdots$ be in $M(\mathbb{C})$. Of course, ν_n converges weakly to ν provided that

$$\int_{\mathbb{C}} \phi(u) \, \nu_n(u) \to \int_{\mathbb{C}} \phi(u) \, \nu(u)$$

for every bounded continuous function ϕ on \mathbb{C} .

THEOREM 3. Let $\theta \in L_{\infty 1;\eta}$ and let $\nu, \nu_n, n = 1, 2, \cdots$ be in $M(\mathbb{C})$. Assume that $\nu_n \to \nu$ weakly. Let F_n be defined as in (1.3) except with ν replaced by ν_n . Then for every $\lambda > 0$,

$$K_{\lambda}(F_n) \to K_{\lambda}(F)$$
 strongly as $n \to \infty$.

Further, if $\int_{\mathbb{C}} e^{\|\theta\|_{\infty 1;\eta}|u|} d|\nu|(u) < \infty$ and if there exists $N_1 < \infty$ such that $\int_{\mathbb{C}} e^{\|\theta\|_{\infty 1;\eta}|u|} d|\nu_n|(u) < N_1$ for all $n = 1, 2, \cdots$, then for $\lambda \in \mathbb{C}_+$

(2.10)
$$K_{\lambda}(F_n) \to K_{\lambda}(F)$$
 strongly as $n \to \infty$.

Further, the convergence in (2.10) is inform on all compact subsets of \mathbb{C}_+ .

PROOF. Let $\lambda > 0$, $x \in C_0^t$ and $\xi \in \mathbb{R}^N$ be given. The function e^{iuv} is bounded and continuous as a function of u. Hence,

$$\int_{\mathbb{C}} e^{-iu \int_{(0,t)} \theta(s,\lambda^{-1/2}x(s)+\xi) d\eta(s)} d\nu_n(u)$$

$$\to \int_{\mathbb{C}} e^{-iu \int_{(0,t)} \theta(s,\lambda^{-1/2}x(s)+\xi) d\eta(s)} d\nu(u),$$

i.e., $F_n(\lambda^{-1/2}x + \xi) \to F(\lambda^{-1/2}x + \xi)$. Note that for all $x \in C^t$ and all $n = 1, 2, \dots,$

$$|F_n(x)| = \left| \hat{\nu}_n \left(\int_{(0,t)} \theta(s, x(s)) \, d\eta(s) \right) \right|$$

$$\leq \|\nu_n\| \leq d$$

where $d = \sup_{n} \|\nu_n\|$, a finite number [7, Theorem 9.3.5]. Hence by

Lemma 3, $K_{\lambda}(F_n) \to K_{\lambda}(F)$ strongly as $n \to \infty$. Let $\psi \in L^2(\mathbb{R}^N)$, then $K_{\lambda}(F_n)\psi$ and $K_{\lambda}(F)\psi$ are analytic for $\lambda \in \mathbb{C}_+$ and $||K_{\lambda}(F_n)\psi|| \leq \int_{\mathbb{C}} e^{||\theta||_{\infty 1;\eta}|u|} d|\nu_n|(u) ||\psi||$. Hence

$$(2.11) ||K_{\lambda}(F_n)\psi|| \le N_1 ||\psi||$$

for all $\lambda \in \mathbb{C}_+$ and for all $n=1,2,\cdots$. Hence, Vitali's theorem yields the result as in the proof of Theorem 1.

THEOREM 4. Assume that $\nu_n \to \nu$ in norm. Then, the under the hypotheses of Theorem 3, $K_{\lambda}(F_n) \to K_{\lambda}(F)$ in the operator norm topology uniformly in λ on all compact subsets of \mathbb{C}_+ . Moreover, for all $\lambda > 0$ we have the norm estimate $||K_{\lambda}(F_n) - K_{\lambda}(F)|| \le ||\nu_n - \nu||, n = 1, 2, \cdots$

PROOF. Clearly for all $\lambda > 0, x \in C_0^t$ and $\xi \in \mathbb{R}^N$

$$\left| \int_{\mathbb{C}} e^{-iu \int_{(0,t)} \theta(s,\lambda^{-1/2}x(s)+\xi) d\eta(s)} d\nu_n(u) - \int_{\mathbb{C}} e^{-iu \int_{(0,t)} \theta(s,\lambda^{-1/2}x(s)+\xi) d\eta(s)} d\nu(u) \right|$$

$$\leq \|\nu_n - \nu\|.$$

Then, for $\lambda > 0$, $x \in C_0^t$ and $\psi \in L^2(\mathbb{R}^N)$

$$\left| \int_{\mathbb{C}} e^{-iu \int_{(0,t)} \theta(s,\lambda^{-1/2}x(s)+\xi) d\eta(s)} d\nu_n(u) \ \psi(\lambda^{-1/2}x(t)+\xi) \right|$$

$$- \int_{\mathbb{C}} e^{-iu \int_{(0,t)} \theta(s,\lambda^{-1/2}x(s)+\xi) d\eta(s)} d\nu(u) \ \psi(\lambda^{-1/2}x(t)+\xi) \right|$$

$$\leq \|\nu_n - \nu\| |\psi(\lambda^{-1/2}x(t)+\xi)|.$$

Hence

$$|(K_{\lambda}(F_n)\psi)(\xi) - (K_{\lambda}(F)\psi(\xi))|$$

$$\leq \int_{C_0} ||\nu_n - \nu|| ||\psi(\lambda^{-1/2}x(t) + \xi)|| dm(x)|$$

$$= ||\nu_n - \nu|| (e^{-t(H_0/\lambda)}||\psi|)(\xi)$$

and thus

$$||K_{\lambda}(F_n)\psi - K_{\lambda}(F)\psi|| \le ||\nu_n - \nu|| \, ||\psi||.$$

Since ψ is arbitrary in $L^2(R^N)$, $||K_{\lambda}(F_n) - K_{\lambda}(F)|| \leq ||\nu_n - \nu||$, $n = 1, 2, \cdots$ and $K_{\lambda}(F_n) \to K_{\lambda}(F)$ in the operator norm topology for $\lambda > 0$. By [2], $K_{\lambda}(F_n)$ and $K_{\lambda}(F)$ are analytic in \mathbb{C}_+ . By (2.11), $||K_{\lambda}(F_n)|| \leq N_1$ for all $\lambda \in \mathbb{C}_+$ and $n = 1, 2, \cdots$. Hence the conclusion follows as in the proof in Theorem 2.

References

- [1] B. M. Ahn, A bounded convergence theorem for the operator-valued Feynman integral, Bull. Korean Math. Soc. 33 (1996), no. 3, 465-475.
- [2] ______, A class of the operator-valued Feynman integral, J. Korean Math. Soc. **34** (1997), no. 3, 569–579.
- [3] R. H. Cameron and D. A. Stovick, An operator valued function space integral and a related integral equations, J. Math. Mech. 18 (1968), 517–552.
- [4] E. Hille and R. S. Phillips, Functional analysis and Semi-groups, vol. XXXI rev. ed, Amer. Math. Soc. Collog., Providence, Amer. Math. Soc., 1957.
- [5] G. W. Johnson and M. L. Lapidus, Generalized Dyson Series, generalized Feynman diagrams, Feynman integral, and Feynman's operational calculus, Mem. Amer. Math. Soc. 62 (1986), no. 351, 1–78.
- [6] G. W. Johnson and D. L. Skoug, Stability Theorems for the Feynman Integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II-Numero 8 (1985), 361–367.
- [7] R. Larsen, Functional Analysis, Marcel Dekker, New York, 1973.
- [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. I, Rev. and enl. ed., Academic Press, New York, 1980.
- [9] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

Department of Mathematics Soonchunhyang University Asan, Chungnam 336-745, Korea E-mail: Anbymo@sch.ac.kr