INTEGRAL OPERATORS FOR OPERATOR VALUED MEASURES

JAE MYUNG PARK

1. Introduction

Let \mathcal{P}_0 be a δ -ring (a ring closed with respect to the forming of countable intersections) of subsets of a nonempty set Ω . Let X and Y be Banach spaces and L(X,Y) the Banach space of all bounded linear operators from X to Y.

A set function $m: \mathcal{P}_0 \to L(X,Y)$ is called an operator valued measure countably additive in the strong operator topology if for every $x \in X$ the set function $E \to m(E)x$ is a countably additive vector measure.

From now on, m will denote an operator valued measure countably additive in the strong operator topology.

We denote by $\mathfrak{S}(\mathcal{P}_0)$ the smallest σ -ring containing \mathcal{P}_0 . By a \mathcal{P}_0 -simple function on Ω with values in X we mean a function of the form

$$f = \sum_{i=1}^{r} x_i \chi_{E_i}$$

where $x_i \in X$, $E_i \in \mathcal{P}_0$ and $E_i \cap E_j = \emptyset$ for $i \neq j$, i, j = 1, 2, ..., r. Its integral is defined in the standard way.

For a function $f: \Omega \to X$ and a set $A \subset \Omega$, put $||f||_A = \sup_{t \in A} |f(t)|$, where |f(t)| denotes the norm of f(t). By $\mathfrak{B}(\Omega, X)$ we mean the Banach space of all bounded function $f: \Omega \to X$ with the supremum norm.

For each $E \in \mathfrak{S}(\mathcal{P}_0)$, the *semivariation* $\hat{m}(E)$ of the measure m is defined by

$$\hat{m}(E) = \sup |\sum_{i=1}^n m(E_i)x_i|$$

Received December 20, 1993. Revised March 1, 1994.

where the supremum is taken over all the finite and measurable partitions of $E \in \mathfrak{S}(\mathcal{P}_0)$ and all the finite families $\{x_i\}_{i=1}^n \subset X$ with $||x_i|| \leq 1$ for i = 1, 2, ..., n. From the definition, we note that \hat{m} is monotone and countably subadditive.

For a δ -ring \mathcal{P}_0 , \mathcal{P}_1 will denote the class of those sets from $\mathfrak{S}(\mathcal{P}_0)$ which have finite semivariation. Put $\mathcal{P} = \mathcal{P}_0 \cap \mathcal{P}_1$.

Elements of \mathcal{P} will be called *integrable* sets. A \mathcal{P} -simple integrable function on Ω with values in X will be called a *simple integrable* function. The set of all simple integrable functions will be denoted by \mathcal{T}_s .

A function $f: \Omega \to X$ is called measurable if there is a sequence of simple integrable functions (f_n) such that $\lim_{n\to\infty} f_n(t) = f(t)$ for each $t\in\Omega$. A measurable function $f:\Omega\to X$ is called integrable if there exists a sequence of simple integrable functions (f_n) converging almost everywhere m to f for which the integrals $\int_{\mathbb{R}} f_n dm$, $n=1,2,\ldots$ are uniformly countably additive on $\mathfrak{S}(\mathcal{P})$. In that case, the integral of the function f on set $A\in\mathfrak{S}(\mathcal{P})$ is defined by $\int_A f dm = \lim_{n\to\infty} \int_A f_n dm$.

It is shown in [2, Theorem 16] that if there exists a sequence of the integrable functions (f_n) which converges almost everywhere m to f and there exists the limit $\lim_{n\to\infty} \int_A f_n dm \in Y$ for each $A \in \mathfrak{S}(\mathcal{P})$, then f is integrable and $\int_A f dm = \lim_{n\to\infty} \int_A f_n dm$. This integral, called the Dobrakov integral, was introduced by I. Dobrakov in [2].

For a measurable function g and $E \in \mathfrak{S}(\mathcal{P})$, the L_1 -norm $\hat{m}(g, E)$ of g on E is a nonnegative not necessarily finite number defined by

$$\hat{m}(g,E) = \sup\{|\int_E f dm| : f \in \mathfrak{T}_s, |f(t)| \le |g(t)| \text{ for each } t \in E\}.$$

The L_1 -norm of the function g is defined by $\hat{m}(g,\Omega) = \sup_{E \in \mathfrak{S}(\mathcal{P})} \hat{m}(g,E)$.

All terms not defined in this paper can be found in [2], [3] and [4].

In this paper, we prove the bounded convergence theorems for the Dobrakov integral, and we study the operators on $\mathfrak{B}(\Omega)$ represented by the Dobrakov integral, where $\mathfrak{B}(\Omega)$ is the space of all bounded measurable scalar valued functions with the usual supremum norm on Ω .

2. The Bounded Convergence Theorem

We start with an analogue of the Bartle's Bounded Convergence Theorem [1, Theorem II.4.1].

THEOREM 2.1. Let (f_n) be a bounded sequence of integrable functions in $\mathfrak{B}(\Omega, X)$ which converges almost everywhere m to a measurable function f. Let $F = \bigcup_{n=0}^{\infty} \{t \in \Omega : |f_n(t)| > 0\}$, where $f_0 = f$. If for each $\varepsilon > 0$ there exists a set $E \in \mathcal{P}$ with $\hat{m}(F - E) < \varepsilon$ such that (f_n) converges uniformly to f on E, then f is integrable and $\int_A f dm = \lim_{n \to \infty} \int_A f_n dm$ for each $A \in \mathfrak{S}(\mathcal{P})$.

Proof. Suppose $||f_n||_{\Omega} \leq K$ for all n. Let $\varepsilon > 0$ be given. Then there exists a set $E \in \mathcal{P}$ with $\hat{m}(F-E) < \varepsilon$ such that (f_n) converges uniformly to f on E.

For each $A \in \mathfrak{S}(\mathcal{P})$, we have

$$\begin{split} \overline{\lim}_{n,p} &| \int_{A} f_{n} dm - \int_{A} f_{p} dm | = \overline{\lim}_{n,p} | \int_{A \cap F} (f_{n} - f_{p}) dm | \\ &\leq \overline{\lim}_{n,p} \left\{ \left| \int_{A \cap (F - E)} (f_{n} - f_{p}) dm | \right| \right. \\ &+ \left. \left| \int_{A \cap F \cap E} (f_{n} - f) dm | + \left| \int_{A \cap F \cap E} (f - f_{p}) dm | \right| \right\} \\ &\leq 2K \hat{m} (A \cap (F - E)) + \overline{\lim}_{n} ||f_{n} - f||_{E} \hat{m}(E) + \overline{\lim}_{p} ||f - f_{p}||_{E} \hat{m}(E) \\ &\leq 2K \hat{m} (F - E) \\ &\leq 2K \varepsilon. \end{split}$$

Thus there exists the limit $\lim_{n\to\infty} \int_A f_n dm \in Y$. By [2, Theorem 6], f is integrable and $\int_A f dm = \lim_{n\to\infty} \int_A f_n dm$ for each $A \in \mathfrak{S}(\mathcal{P})$.

COROLLARY 2.2. Let (f_n) be a bounded sequence of integrable functions in $\mathfrak{B}(\Omega, X)$ which converges almost everywhere m to a measurable function f. Let $F = \bigcup_{n=0}^{\infty} \{t \in \Omega : |f_n(t)| > 0\}$, where $f_0 = f$. If for each $\varepsilon > 0$ there exists a set $E \in \mathfrak{S}(\mathcal{P})$ with $\hat{m}(F - E) < \varepsilon$ such that (f_n) is a Cauchy sequence in L_1 -norm on E, then f is integrable and $\int_A f dm = \lim_{n \to \infty} \int_A f_n dm$ for each $A \in \mathfrak{S}(\mathcal{P})$.

Proof. Let $\varepsilon > 0$ be given. Then there exists a set $E \in \mathfrak{S}(\mathcal{P})$ with $\hat{m}(F - E) < \varepsilon$ such that (f_n) is a Cauchy sequence in L_1 -norm on E. Suppose $||f_n||_{\Omega} \leq K$ for all n. Then the desired result follows immediately from the next relation;

$$\overline{\lim_{n,p}} | \int_{A} f_{n} dm - \int_{A} f_{p} dm |$$

$$\leq \overline{\lim_{n,p}} | \int_{A \cap (F-E)} (f_{n} - f_{p}) dm | + \overline{\lim_{n,p}} | \int_{A \cap F \cap E} (f_{n} - f_{p}) dm |$$

$$\leq 2K \hat{m} (A \cap (F-E)) + \overline{\lim_{n,p}} \hat{m} (f_{n} - f_{p}, A \cap F \cap E)$$

$$\leq 2K \hat{m} (F-E) + \overline{\lim_{n,p}} \hat{m} (f_{n} - f_{p}, E)$$

$$\leq 2K\varepsilon$$

for each $A \in \mathfrak{S}(\mathcal{P})$.

COROLLARY 2.3. Let (f_n) be a bounded sequence of integrable functions in $\mathfrak{B}(\Omega, X)$ which converges almost everywhere m to a measurable function f.

If \hat{m} is continuous on $\mathfrak{S}(\mathcal{P})$ (i.e., if $E_n \in \mathfrak{S}(\mathcal{P})$, $E_n \setminus \emptyset$, $n = 1, 2, \ldots$, then $\lim_{n \to \infty} \hat{m}(E_n) = 0$), then f is integrable and $\int_A f dm = \lim_{n \to \infty} \int_A f_n dm$ for each $A \in \mathfrak{S}(\mathcal{P})$.

Proof. Let $F = \bigcup_{n=0}^{\infty} \{t \in \Omega : |f_n(t)| > 0\}$, where $f_0 = f$. Then $F \in \mathfrak{S}(\mathcal{P})$. By Egoroff-Lusin's theorem [2, Theorem 1], there is a set $N \in \mathfrak{S}(\mathcal{P})$ and a nondecreasing sequence of sets $F_k \in \mathcal{P}, k = 1, 2, \ldots$, with $\bigcup_{n=0}^{\infty} F_k = F - N$ such that N is a m-zero set and on each F_k the sequence (f_n) converges uniformly to the function f.

Since \hat{m} is continuous on $\mathfrak{S}(\mathcal{P})$, for each $\varepsilon > 0$ we can select F_k such that $\hat{m}(F - F_k) < \varepsilon$. The desired result now follows immediately from the Theorem 2.1.

3. Operators on $\mathfrak{B}(\Omega)$

By $\mathfrak{L}_1\mathfrak{M}(m)$ or $\mathfrak{L}_1\mathfrak{T}(m)$, we denote the set of all measurable or integrable functions with $\hat{m}(g,\Omega)<\infty$. By $\mathfrak{L}_1\mathfrak{T}_s(m)$, we denote the closure in the L_1 -norm of the set of all simple integrable functions \mathfrak{T}_s in

 $\mathfrak{L}_1\mathfrak{M}(m)$. By $\mathfrak{L}_1(m)$ we denote the set of all functions $g \in \mathfrak{L}_1\mathfrak{M}(m)$ whose L_1 -norms $\hat{m}(g,\cdot)$ are continuous on $\mathfrak{S}(\mathcal{P})$. It is well-known in [3, Theorem 4] that

$$\mathfrak{L}_1(m) \subset \mathfrak{L}_1\mathfrak{T}_s(m) \subset \mathfrak{L}_1\mathfrak{T}(m) \subset \mathfrak{L}_1\mathfrak{M}(m).$$

If $f \in \mathfrak{B}(\Omega)$ and $g \in \mathfrak{L}_1\mathfrak{T}(m)$, then fg is integrable [2, Theorem 4]. For $g \in \mathfrak{L}_1\mathfrak{T}(m)$, we consider the operator $T : \mathfrak{B}(\Omega) \to Y$ defined by $Tf = \int fgdm$. It is easy to show that the operator T is bounded and $||T|| \leq \hat{m}(g,\Omega)$.

THEOREM 3.1. Let $g \in \mathfrak{L}_1\mathfrak{T}(m)$ and $F = \{t \in \Omega : |g(t)| > 0\}$. Define $T : \mathfrak{B}(\Omega) \to Y$ by $Tf = \int fgdm$. Then T is compact if and only if for each $\varepsilon > 0$ there exists $E_{\varepsilon} \in \mathfrak{S}(P)$ with $\hat{m}(g, F - E_{\varepsilon}) < \varepsilon$ such that the operator T_{ε} defined by $T_{\varepsilon}f = \int_{E_{\varepsilon}} fgdm$ is compact.

Proof. Suppose that T is compact. Since g is measurable, $F \in \mathfrak{S}(\mathcal{P})$. By taking $E_{\varepsilon} = F$ for each $\varepsilon > 0$, it follows that $T_{\varepsilon} = T$ and T_{ε} is compact.

To prove the converse, let $\varepsilon > 0$. Then there exists $E_{\varepsilon} \in \mathfrak{S}(\mathcal{P})$ with $\hat{m}(g, F - E_{\varepsilon}) < \varepsilon$ such that T_{ε} is compact.

Let U be the unit ball of $\mathfrak{B}(\Omega)$. Then $\{\int_{E_{\epsilon}} fgdm : f \in U\}$ is relatively compact and hence totally bounded by ε -balls. For $f \in U$, we have

$$egin{aligned} |\int_{\Omega-E_{m{arepsilon}}}fgdm \mid &= |\int_{F-E_{m{arepsilon}}}fgdm \mid \ &\leq \hat{m}(fg,F-E_{m{arepsilon}}) \leq \hat{m}(g,F-E_{m{arepsilon}}) < arepsilon. \end{aligned}$$

It follows easily that

$$\{Tf: f\in U\} = \{\int_{E_{\varepsilon}} fgdm + \int_{\Omega - E_{\varepsilon}} fgdm: f\in U\}$$

is totally bounded by 2ε -balls. Hence T is compact.

In paticular, if $g \in \mathfrak{L}_1\mathfrak{T}_s(m)$, then we can prove that the operator T in Theorem 3.1 is compact.

THEOREM 3.2. Let $g \in \mathfrak{L}_1\mathfrak{T}_s(m)$ and $T : \mathfrak{B}(\Omega) \to Y$ be the linear operator defined by $Tf = \int fgdm$. Then T is compact.

Proof. Since $g \in \mathfrak{L}_1\mathfrak{T}_s(m)$, there exists a sequence (g_n) of simple integrable functions such that (g_n) converges to g in L_1 -norm in $\mathfrak{L}_1\mathfrak{M}(m)$.

Define the operator $T_n: \mathfrak{B}(\Omega) \to Y$ by $T_n f = \int f g_n dm$. Since each g_n has a finite range, T_n is a finite rank continuous linear operator.

For $f \in \mathfrak{B}(\Omega)$, we have

$$|(T - T_n)f| = |\int f(g - g_n)dm|$$

$$\leq \hat{m}(f(g - g_n), \Omega) \leq ||f||_{\Omega} \hat{m}(g - g_n, \Omega).$$

Since (g_n) converges to g in L_1 -norm and each T_n is compact, T is compact.

Now proceeding like in the proof of Theorem 3.2, we get the following corollary.

COROLLARY 3.3. Let $g, g_n \in \mathfrak{L}_1\mathfrak{T}(m)$ (n = 1, 2, ...). Let $T, T_n : \mathfrak{B}(\Omega) \to Y$ be operators defined by $Tf = \int fgdm$ and $T_n f = \int fg_n dm$, respectively. If each T_n is compact and g_n converges to g in L_1 -norm, then T is compact.

References

- 1. J. Diestel and J. J. Uhl, *Vector Measures*, Math. Surveys Monographs, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- I. Dobrakov, On integration in Banach spaces I, Czechoslovak Math. J. 20 (1970), 511-536.
- 3. _____, On Representation of linear operators on $C_0(T,X)$, Czechoslovak Math. J. 21 (1971), 13-30.
- On integration in Banach spaces II, Czechoslovak Math. J. 20 (1970), 680-695.
- 5. _____, On integration in Banach spaces III, Czechoslovak Math. J. 29 (1979), 478-499.
- N. Dunford and J. Schwarz, Linear operators I, Interscience Publisher, New York, 1958.

Department of Mathematics Chungnam National University Taejon 305-764, Korea