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INTEGRAL OPERATORS FOR
OPERATOR VALUED MEASURES

JAE MYUNG PARK

1. Introduction

Let Py be a é-ring (a ring closed with respect to the forming of count-
able intersections) of subsets of a nonempty set . Let X and Y be
Banach spaces and L(X,Y") the Banach space of all bounded linear op-
erators from X to Y.

A set function m : Py — L(X,Y) is called an operator valued measure
countably additive in the strong operator topology if for every z € X the
set function E — m(E)z is a countably additive vector measure.

From now on, m will denote an operator valued measure countably
additive in the strong operator topology.

We denote by G(Pg) the smallest o-ring containing Py. By a Po-
simple function on ) with values in X we mean a function of the form

r
f = Z xiXE'»
=1

where 2; € X, E;€ Pyand E;NE; =8fori#j, 1,7 =1,2,...,r. Its
integral is defined in the standard way.
For a function f : @ — X and a set A C 2, put ||f||la = sup|f(?)],
tcA

where | f(t)| denotes the norm of f(t). By B(£, X) we mean the Banach
space of all bounded function f: @ — X with the supremum norm.

For each E € &(P,), the semivariation m(E) of the measure m is
defined by

M(E) = sup| Y _ m(E;)ail

=1
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where the supremum is taken over all the finite and measurable partitions
of E € &(Py) and all the finite families {z;}2; C X with ||z;|| < 1 for
i =1,2,...,n. From the definition, we note that m is monotone and
countably subadditive.

For a §-ring Py, P; will denote the class of those sets from &(P,)
which have finite semivariation. Put P = Py, N P;.

Elements of P will be called integrable sets. A P-simple integrable
function on §2 with values in X will be called a simple integrable function.
The set of all simple integrable functions will be denoted by ¥,.

A function f : Q@ — X is called measurable if there is a sequence
of simple integrable functions (f) such that ll}1r°1o fa(t) = f(t) for each
t € Q. A measurable function f : Q@ — X isncalled integrable if there
exists a sequence of simple integrable functions (f,) converging almost
everywhere m to f for which the integrals [ fndm, n = 1,2,... are
uniformly countably additive on &(P). In that case, the integral of the
function f on set A € &(P) is defined by [, fdm = nli_’ngo J4 fadm.

It is shown in [2, Theorem 16] that if there exists a sequence of the
integrable functions (f,) which converges almost everywhere m to f
and there exists the limit lim [, f.dm € Y for each A € &(P), then

n-—co

f is integrable and [ fdm = lim [, fodm. This integral, called the

Dobrakov integral, was introduced by I. Dobrakov in [2].

For a measurable function ¢ and E € &(P), the Ly-norm m(g, E) of
g on E is a nonnegative not necessarily finite number defined by

m(g, E) = sup{| /Efdm| : f €%, |f(B)| < |g(t)| for each t € E}.

The L;-norm of the function g is defined by mi(g,2) = sup (g, E).
Ees(P)

All terms not defined in this paper can be found in [2], [3] and [4].

In this paper, we prove the bounded convergence theorems for the Do-
brakov integral, and we study the operators on B({2) represented by the
Dobrakov integral, where B(€2) is the space of all bounded measurable
scalar valued functions with the usual supremum norm on 2.



Integral operators for operator valued measures 333

2. The Bounded Convergence Theorem

We start with an analogue of the Bartle’s Bounded Convergence The-
orem [1, Theorem IL.4.1].

THEOREM 2.1. Let (fn) be a bounded sequence of integrable func-
tions in $B(§), X ) which converges almost everywhere m to a measurable
function f. Let F = |J>2,{t € Q : |fa(t)l > 0}, where fo = f. If
for each ¢ > 0 there exists a set E € P with m(F — E) < ¢ such
that (f,) converges uniformly to f on E, then f is integrable and
[a fdm = r}i—{réofA fadm for each A € &(P).

Proof. Suppose ||fn|lo < K for all n. Let ¢ > 0 be given. Then there
exists a set E € P with m(F—E) < ¢ such that (f,) converges uniformly
to fon E.

For each A € &(P), we have

5 | [ fadm— [ fpam |=Tm | [ (fu fy)im

<Iim {| (fn = fp)dm |

P AN(F-E)
+ ] (o — F)dm | + |/ (f - fy)dm |}
ANFNE . ANFNE .
< 2K (AN (F - B)) + Il fa — {15 7(E) + TRf - foll (E)

<2Km(F - E)
< 2Ke.

Thus there exists the limit lim [, fodm € Y. By [2, Theorem 6], f
is integrable and [, fdm = lim [, f,dm for each A € S(P).

COROLLARY 2.2. Let (f») be a bounded sequence of integrable func-
tions in B(, X ) which converges almost everywhere m to a measurable
function f. Let F = U2 {t € Q: |fa(t)] > 0}, where fo = f. If for
each ¢ > 0 there exists a set E € &(P) with m(F — E) < € such that
(fn) is a Cauchy sequence in Li-norm on E, then f is integrable and
f4 fdm = Jim_ f4 fndm for each A € &(P).



334 Jae Myung Park

Proof. Let € > 0 be given. Then there exists a set E € &(P) with
m(F — E) < € such that (f,) is a Cauchy sequence in L;-norm on E.
Suppose ||fn]la < K for all n. Then the desired result follows immedi-
ately from the next relation;

T | f,,dm_/f,,dm;
™P o JA A

Sml (fn — fp)dm |+m| (fa = fp)dm |
n,p AN(F—E) P JANFNE

<2K m(AN(F — E))+lim m(f, — f,ANFNE)
n,p
< 2K m(F — E) 4+ lim w(f, — f,, E)
n,p
< 2Ke

for each A € &(P).

COROLLARY 2.3. Let (f.) be a bounded sequence of integrable func-
tions in *B(N, X') which converges almost everywhere m to a measurable
function f.

If v is continuous on &(P) (i.e., if E, € 6(P), E, \\ 0§, n=1,2,...,
then JLxEOTh(En) =0), then f is integrable and [, fdm = nan;o J4 frdm

for each A € &(P).

Proof. Let F = {J2,{t € Q@ : |fu(t)] > 0}, where fo = f. Then
F € 8(P). By Egoroff-Lusin’s theorem [2, Theorem 1], there is a set
N € 6(P) and a nondecreasing sequence of sets Fy, € P,k = 1,2,...,
with U;“;O Fy = F — N such that N is a m-zero set and on each F} the
sequence (f,) converges uniformly to the function f.

Since 7 is continuous on &(P), for each &€ > 0 we can select Fj such
that m(F — F) < €. The desired result now follows immediately from
the Theorem 2.1.

3. Operators on B(Q)

By £,9(m) or £,%(m), we denote the set of all measurable or in-
tegrable functions with (g, Q) < co. By £,%,(m), we denote the clo-
sure in the L;-norm of the set of all simple integrable functions ¥, in
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L£1M(m). By Li1(m) we denote the set of all functions g € £,9(m)
whose L;-norms (g, -) are continuous on &(P). It is well-known in [3,
Theorem 4] that

21(771) C les(m) C 21(5(7’)’1,) C 21931(m)

If f e B(2) and g € £,%(m), then fg is integrable [2, Theorem 4].
For g € £,%(m), we consider the operator T : B(2) — Y defined by
Tf = [ fgdm. It is easy to show that the operator T is bounded and
|17 < rin(g, Q).

THEOREM 3.1. Let g € £,%(m) and F = {t € Q: |g(t)| > 0}. Define
T:B(Q)—Y by Tf = [ fgdm. Then T is compact if and only if for
each € > 0 there exists E, € 6(P) with m(g,F — E.) < ¢ such that the
operator T, defined by T.f = |, E, fgdm is compact.

Proof. Suppose that T is compact. Since g is measurable, F € &(P).
By taking E, = F for each ¢ > 0, it follows that T, = T and T is
compact.

To prove the converse, let € > 0. Then there exists E, € G(P) with
m(g,F — E.) < € such that T, is compact.

Let U be the unit ball of B(£2). Then { g, fgdm: f¢€ U} is relatively
compact and hence totally bounded by e-balls. For f € U, we have

f fgdm | = | fgdm |
Q-E, F—E.

< (fg,F — E.) < (g,F — E,) <e.

It follows easily that
(55 vy ={[ foam+ [ foam:feU)
E. Q-E,
is totally bounded by 2¢-balls. Hence T is compact.

In paticular, if g € £,%,(m), then we can prove that the operator T
in Theorem 3.1 is compact.
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THEOREM 3.2. Let g € £,%,(m) and T : B(Q!) — Y be the linear
operator defined by Tf = [ fgdm. Then T is compact.

Proof. Since g € £,%,(m), there exists a sequence (g, ) of simple in-
tegrable functions such that {g,) converges to g in L,-norm in £,9(m).

Define the operator T, : B(Q) - Y by T.f = [ fgndm. Since each
gn has a finite range, T}, is a finite rank continuous linear operator.

For f € B(), we have

(T - Ta)f| = | / £(g = gn)dml|
< (f(g ~ g1 D) < || la (g — 9 ).

Since (g,) converges to g in L;-norm and each T, is compact, T is
compact.

Now proceeding like in the proof of Theorem 3.2, we get the following
corollary.

COROLLARY 3.3. Let g,9, € £,%(m) (n = 1,2,...). Let T,T, :
B() — Y be operators defined by Tf = [ fgdm and Tnf = [ fgndm,
respectively. If each T, is compact and g, converges to g in L;-norm,
then T is compact.
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