Bull. Korean Math. Soc. ${\bf 52}$ (2015), No. 5, pp. 1579–1586 http://dx.doi.org/10.4134/BKMS.2015.52.5.1579

BARRELLEDNESS OF SOME SPACES OF VECTOR MEASURES AND BOUNDED LINEAR OPERATORS

JUAN CARLOS FERRANDO

ABSTRACT. In this paper we investigate the barrellednes of some spaces of X-valued measures, X being a barrelled normed space, and provide examples of non barrelled spaces of bounded linear operators from a Banach space X into a barrelled normed space Y, equipped with the uniform convergence topology.

1. Preliminaries

The barrelledness of certain spaces of vector-valued functions has been widely studied, see [7, Chapters 8-10] and references therein. If K is a locally compact Hausdorff space, (Ω, Σ) a measurable space, $\mu \in ca^+(\Sigma)$ and X a normed space over the field K of the real or complex numbers, the following are among the most beautiful results on this topic.

- (1) The space $B(\Sigma, X)$ over \mathbb{K} of all those functions $f: \Omega \to X$ that are the uniform limit of a sequence of Σ -simple X-valued functions, equipped with the supremum norm, is barrelled if and only if X is barrelled, [12].
- (2) The space C(K, X) over \mathbb{K} of all continuous functions $f : K \to X$ endowed with the compact-open topology is barrelled if and only if C(K) and X are barrelled, [13].
- (3) If μ is atomless the space $L_p(\mu, X)$ over \mathbb{K} , with $1 \leq p \leq \infty$, of all [classes of] strongly measurable functions $f: \Omega \to X$ that are Bochner integrable if $1 \leq p < \infty$, or essentially bounded if $p = \infty$, equipped with the integral norm $\|f\|_p$ or with the essential supremum norm $\|f\|_{\infty}$, respectively, is barrelled ([2] and [3]), regardless X is barrelled or not.

 $\bigodot 2015$ Korean Mathematical Society

1579

Received October 22, 2014.

²⁰¹⁰ Mathematics Subject Classification. 46A08, 46G10, 46B28.

 $Key\ words\ and\ phrases.$ barrelled space, vector measure, bounded linear operator, projective and injective tensor product, Radon-Nikodým property.

Supported by Grant PROMETEO/2013/058 of the Conserjería de Educación, Cultura y Deportes of Generalidad Valenciana.

JUAN CARLOS FERRANDO

- (4) The space ℓ_∞ (Σ, X) over K of all bounded Σ-measurable functions f : Ω → X, equipped with the supremum norm, is barrelled if and only if X is barrelled, [5].
- (5) If X is a Banach space, the space $\mathcal{P}_1(\mu, X)$ over \mathbb{K} of all [classes of scalarly equivalent] weakly μ -measurable and Pettis integrable functions $f: \Omega \to X$, equipped with the so-called Pettis norm or semivariation norm, is barrelled, as well as the subspace $P_1(\mu, X)$ of all [classes of] strongly measurable functions, [3].
- (6) The space $\ell_{\infty}(\Omega, X)$ over \mathbb{K} of all bounded functions $f : \Omega \to X$, equipped with the supremum norm, is barrelled whenever X is barrelled and either $|\Omega|$ or |X| is a nonmeasurable cardinal, [4].
- (7) If K is (locally compact and) normal, the space $C_0(K, X)$ over \mathbb{K} of all continuous functions $f : K \to X$ vanishing at infinity, i.e., such that for each $\epsilon > 0$ there exists a compact set $K_{f,\epsilon} \subseteq K$ with the property that $||f(\omega)|| < \epsilon$ for each $\omega \in K \setminus K_{f,\epsilon}$, provided with the supremum norm, is barrelled if and only if X is barrelled, [6].

Let us point out that $B(\Sigma, X)$ coincides with the closure in $\ell_{\infty}(\Omega, X)$ of the subspace $\ell_0^{\infty}(\Sigma, X)$ of $\ell_{\infty}(\Omega, X)$ consisting of all X-valued Σ -simple functions. If X is separable then $\ell_{\infty}(\Omega, X) = \ell_{\infty}(2^{\Omega}, X)$. In the sequel we shall write $\ell_0^{\infty}(\Sigma)$ instead of $\ell_0^{\infty}(\Sigma, \mathbb{K})$ and ℓ_0^{∞} instead of $\ell_0^{\infty}(2^{\mathbb{N}})$. Clearly, ℓ_0^{∞} coincides with the dense subspace of ℓ_{∞} of those sequences (ξ_n) of finite range. Regardless of Σ , the space $\ell_0^{\infty}(\Sigma)$ is always barrelled (see [7, Theorem 5.2.4]). If Γ is a nonempty set, the linear space $c_0(\Gamma, X)$ over \mathbb{K} of all functions $f: \Gamma \to X$ such that for each $\epsilon > 0$ the set $\{\omega \in \Gamma : ||f(\omega)|| > \epsilon\}$ is finite, equipped with the supremum norm, coincides with $C_0(\Gamma, X)$ for discrete Γ , so that $c_0(\Gamma, X)$ is barrelled if and only if X is barrelled. We shall frequently require the following result.

Theorem 1 (Freniche [8]). The space $\ell_0^{\infty}(\Sigma, E)$ of Σ -simple functions with values in a Hausdorff locally convex space E, where Σ is an infinite σ -algebra of subsets of a set Ω , endowed with the uniform convergence topology is barrelled if and only if $\ell_0^{\infty}(\Sigma)$ and E are barrelled and E is nuclear.

Yet there are several spaces of vector-valued measures and of bounded linear operators which have received less attention. Next we investigate the barrelledness of some of them. Along this paper X will be a normed or a Banach space, Y a normed space and (Ω, Σ) a nontrivial measurable space. If X is a normed space, we denote by bvca (Σ, X) the linear space over K of countably additive X-valued measures $F : \Sigma \to X$ of bounded variation equipped with the variation norm $|F| = |F|(\Omega)$, where $|F|(E) = \sup \sum_{A \in \pi} ||F(A)||$ and the supremum runs over all finite partitions π of $E \in \Sigma$ by elements of Σ . By ca (Σ, X) we represent the space of all X-valued countably additive measures provided with the semivariation norm, and by cca (Σ, X) the subspace of ca (Σ, X) of those measures of relatively compact range. We denote by L(X, Y) the linear space over K of all bounded linear operators from X

1580

into Y equipped with the uniform convergence topology, and by K(X,Y) the subspace of L(X,Y) of all those compact linear operators. By $L_{w^*}(X^*,Y)$ we denote the subspace of $L(X^*,Y)$ of all weak*-weakly continuous operators from X^* into Y. The linear space of the weakly compact linear operators from X into Y is denoted by W(X,Y). Recall that spaces of vector-valued measures and spaces of linear operators are close related, and sometimes they are representable by tensor products. For example, if X is a normed space then $\ell_0^{\infty}(\Sigma,X) = \ell_0^{\infty}(\Sigma) \otimes_{\varepsilon} X$ and, if X is a Banach space, $L_{w^*}(\operatorname{ca}(\Sigma)^*,X)$ is linearly isomorphic to $\operatorname{ca}(\Sigma,X)$, whereas $\operatorname{cca}(\Sigma,X) = \operatorname{ca}(\Sigma) \widehat{\otimes}_{\varepsilon} X$. Naturally, if K is compact then $C(K,X) = C(K) \widehat{\otimes}_{\varepsilon} X$. If $K = \mathbb{N} \cup \{\infty\}$ is the Alexandroff compactification of the discrete space \mathbb{N} and E is a linear space over \mathbb{K} of uncountable dimension provided with the strongest locally convex topology, then C(K, E) is no longer barrelled, [17]. Research on barrelledness conditions is still active (see [10, 15, 16]).

2. Barrelledness of some spaces of vector measures

Let X be a normed space. If $\mu \in \operatorname{ca}^+(\Sigma)$, we shall represent by bvca (Σ, μ, X) the linear subspace of bvca (Σ, X) consisting of all those vector measures that are μ -continuous, whereas $L_1(\mu, X)$ will stand for the linear space over \mathbb{K} of all (equivalence classes of) strongly measurable X-valued Bochner integrable functions defined on Ω endowed with the norm

$$\left\|f\right\|_{1} = \int_{\Omega} \left\|f\left(\omega\right)\right\| d\mu\left(\omega\right).$$

The linear map $T: L_1(\mu, X) \to bvca(\Sigma, \mu, X)$ defined by

(2.1)
$$Tf(E) = \int_{E} f(\omega) \, d\mu(\omega)$$

for $E \in \Sigma$ is an isometry into since $|Tf| = ||f||_1$. If X is a Banach space, T becomes an isometry onto the whole of byca (Σ, μ, X) if and only if X has the Radon-Nikodým property with respect to μ .

Theorem 2. Assume that the completion \widehat{X} of X has the Radon-Nikodým property with respect to each $\mu \in ca^+(\Sigma)$. Then byca (Σ, X) is barrelled if and only if X is barrelled.

Proof. If X is barrelled and $\omega \in \Omega$, the standard map P_{ω} : bvca $(\Sigma, X) \rightarrow$ bvca (Σ, X) defined by $P_{\omega}F = F(\Omega)\delta_{\omega}$ is a bounded linear projection from bvca (Σ, X) onto the copy $\{x\delta_{\omega} : x \in X\}$ of X within bvca (Σ, X) . Since P_{ω} is a quotient map, then X is barrelled if bvca (Σ, X) does [9, 11.3.1 Proposition (a)].

For the converse let us fix $\mu \in \operatorname{ca}^+(\Sigma)$. If $S_1(\mu)$ denotes the barrelled linear subspace of $L_1(\mu)$ of all (classes of) scalarly valued μ -simple functions and $S_1(\mu, X)$ stands for the subspace of $L_1(\mu, X)$ consisting of the X-valued μ -simple functions, the mapping $\varphi : S_1(\mu) \otimes_{\pi} X \to S_1(\mu, X)$ obtained by linearizing the ansatz $\varphi(\chi_E \otimes x) = \chi_E x$ with $E \in \Sigma$ and $x \in X$ is an isometry. This implies that the composition $T \circ \varphi$ is a linear isometry from $S_1(\mu) \otimes_{\pi} X$ into a subspace of byca (Σ, μ, \hat{X}) . But if $x_i \in X$ and $E_i \in \Sigma$ for $1 \leq i \leq n$ then

$$(T \circ \varphi) \left(\sum_{i=1}^{n} \chi_{E_i} \otimes x_i \right) (A) = \sum_{i=1}^{n} \int_A \chi_{E_i} (\omega) \ x_i \, d\mu (\omega) = \sum_{i=1}^{n} \mu \left(E_i \cap A \right) x_i \in X$$

for every $A \in \Sigma$, so that $\operatorname{Im}(T \circ \varphi) \subseteq X$. Hence actually $T \circ \varphi$ is a linear isometry from $S_1(\mu) \otimes_{\pi} X$ into a subspace of $\operatorname{bvca}(\Sigma, \mu, X)$.

Denote by S the canonical map (2.1) from $L_1(\mu, \hat{X})$ into $\operatorname{bvca}(\Sigma, \mu, \hat{X})$ and reserve the letter T for the restriction of S to the subspace $L_1(\mu, X)$. Since \hat{X} is supposed to have the Radon-Nikodým property with respect to μ , then Smaps isometrically $L_1(\mu, \hat{X})$ onto $\operatorname{bvca}(\Sigma, \mu, \hat{X})$. Given that $S_1(\mu, X)$ is a dense subspace of $S_1(\mu, \hat{X})$ and $S_1(\mu, \hat{X})$ is dense in $L_1(\mu, \hat{X})$, then $S(S_1(\mu, X)) =$ $(T \circ \varphi) (S_1(\mu) \otimes_{\pi} X)$ is a dense subspace of $\operatorname{bvca}(\Sigma, \mu, \hat{X})$ contained in $\operatorname{bvca}(\Sigma, \mu, X)$. So we conclude that $S_1(\mu) \otimes_{\pi} X$ is linearly isometric to a dense subspace of $\operatorname{bvca}(\Sigma, \mu, X)$.

On the other hand, since each $F \in bvca(\Sigma, X)$ is |F|-continuous we have

bvca
$$(\Sigma, X) = \bigcup \{ bvca (\Sigma, \mu, X) : \mu \in ca^+ (\Sigma) \}.$$

Let us show that $\operatorname{bvca}(\Sigma, X)$ is the locally convex hull of $\{\operatorname{bvca}(\Sigma, \mu, X) : \mu \in \operatorname{ca}^+(\Sigma)\}$. Let U be an absolutely convex set of $\operatorname{bvca}(\Sigma, X)$ which meets each $\operatorname{bvca}(\Sigma, \mu, X)$ in a neighborhood of the origin in $\operatorname{bvca}(\Sigma, \mu, X)$. We claim that U is a neighborhood of the origin of $\operatorname{bvca}(\Sigma, X)$. Otherwise there exists a normalized sequence $\{F_n\}_{n=1}^{\infty}$ in $\operatorname{bvca}(\Sigma, X)$ such that $F_n \notin nU$ for each $n \in \mathbb{N}$. Since $\{F_n : n \in \mathbb{N}\}$ is bounded in $\operatorname{bvca}(\Sigma, X)$, then the scalar measure $\nu := \sum_{n=1}^{\infty} 2^{-n} |F_n|$ belongs to $\operatorname{ca}^+(\Sigma)$ and, consequently, $F_n \in \operatorname{bvca}(\Sigma, \nu, X)$ for every $n \in \mathbb{N}$. But since $U \cap \operatorname{bvca}(\Sigma, \nu, X)$ is a neighborhood of the origin in $\operatorname{bvca}(\Sigma, \nu, X)$, there must exist $m \in \mathbb{N}$ such that $F_m \in mU$, a contradiction.

Since $S_1(\mu)$ and X are barrelled normed spaces, we have that $S_1(\mu) \otimes_{\pi} X$ is barrelled too [7, Theorem 1.6.6], and since $S_1(\mu) \otimes_{\pi} X$ is linearly isometric to a dense subspace of byca (Σ, μ, X) , then this latter subspace is also barrelled [11, 27.1.(2)]. Finally, the conclusion follows from the fact that the locally convex hull of a family of barrelled spaces is barrelled [11, 27.1.(3)].

Remark 3. An alternative proof. The proof of the previous theorem solves Problem 6 of [7, Chapter 8]. Another approach may be the following. If \hat{X} has the Radon-Nikodým property with respect to each $\mu \in \operatorname{ca}^+(\Sigma)$, it can be shown (cf. [14, Corollary 5.23]) that $\operatorname{ca}(\Sigma) \widehat{\otimes}_{\pi} X = \operatorname{ca}(\Sigma) \widehat{\otimes}_{\pi} \widehat{X} = \operatorname{bvca}(\Sigma, \widehat{X})$ isometrically. But a careful reading of the proof of [14, Theorem 5.22] shows that (under the assumption that \widehat{X} has the Radon-Nikodým property with respect to each $\mu \in \operatorname{ca}^+(\Sigma)$) even for normed spaces the projective product space $\operatorname{ca}(\Sigma) \otimes_{\pi} X$ is in fact linearly isometric to a dense subspace of bvca (Σ, X) . Since ca $(\Sigma) \otimes_{\pi} X$ is barrelled if X is barrelled (cf. [7, Theorem 1.6.6]), it follows that bvca (Σ, X) is barrelled if and only if X is barrelled.

Corollary 4. Let X be a normed space and suppose that each $\mu \in ca^+(\Sigma)$ is purely atomic. Then byca (Σ, X) is barrelled if and only if X is barrelled.

Proof. Since each $\mu \in ca^+(\Sigma)$ is purely atomic, the Banach space \hat{X} has the Radon-Nikodým property with respect to every $\mu \in ca^+(\Sigma)$. So the previous theorem applies.

Theorem 5. Assume that the σ -algebra Σ is infinite. Then $\operatorname{ca}(\Sigma, \ell_0^{\infty}) = \operatorname{cca}(\Sigma, \ell_0^{\infty})$ and neither $\operatorname{ca}(\Sigma, \ell_0^{\infty})$ nor $\operatorname{cca}(\Sigma, \ell_0^{\infty})$ are barrelled, despite the fact that ℓ_0^{∞} is barrelled.

Proof. Let $F \in \operatorname{ca}(\Sigma, \ell_0^{\infty})$. Let us see first that $F(\Sigma)$ is contained in a finitedimensional subspace of ℓ_0^{∞} . Indeed, assume by contradiction that $F(\Sigma)$ is infinite-dimensional. In this case there is a sequence $\{E_n : n \in \mathbb{N}\} \subseteq \Sigma$ such that the linear space span $\{F(E_n) : n \in \mathbb{N}\}$ is infinite-dimensional. Setting $A_1 := E_1$ and $A_n := E_n \setminus \bigcup_{i=1}^{n-1} A_i$ for $n \geq 2$ as is frequently done, then $\{A_n : n \in \mathbb{N}\}$ is a countable family of pairwise disjoint sets of Σ such that $F(E_n) = \sum_{i=1}^n F(A_i)$. Thus we have span $\{F(E_n) : n \in \mathbb{N}\} \subseteq$ span $\{F(A_n) :$ $n \in \mathbb{N}\}$. But the series $\sum_{n=1}^{\infty} F(A_n)$ is subseries convergent in ℓ_0^{∞} as a consequence of the fact that $\sum_{i=1}^{\infty} F(A_{n_i}) = F(\bigcup_{i=1}^{\infty} A_{n_i}) \in \ell_0^{\infty}$ for every increasing sequence $\{n_i\}_{i=1}^{\infty}$ of positive integers. Thus, according to [1, Theorem 1(b)], the linear subspace span $\{F(A_n) : n \in \mathbb{N}\}$ of ℓ_0^{∞} must be finite-dimensional, a contradiction.

Since $F(\Sigma)$ is contained in a finite-dimensional subspace of ℓ_0^{∞} and (because of F is countably additive) the set $F(\Sigma)$ is weakly compact, it follows that $F(\Sigma)$ is relatively compact in ℓ_0^{∞} , which ensures that $\operatorname{ca}(\Sigma, \ell_0^{\infty}) = \operatorname{cca}(\Sigma, \ell_0^{\infty})$.

On the other hand, the fact that the range $F(\Sigma)$ of F is finite-dimensional also tells us that there is a finite family $\{B_1, \ldots, B_p\}$ of pairwise disjoints elements of Σ , which depends on F, such that $F(\Sigma) \subseteq \text{span} \{F(B_1), \ldots, F(B_p)\}$. Consequently, the vector measure F must be of the form

$$F(E) = \sum_{i=1}^{p} \mu_i(E) F(B_i),$$

where each $\mu_i : \Sigma \to \mathbb{K}$ is clearly a countably additive scalar measure, i.e., $\mu_i \in \operatorname{ca}(\Sigma)$. Setting $x_i := F(B_i)$ for $1 \le i \le p$, we see that we can represent the measure F as a tensor product of the form $F = \sum_{i=1}^{p} \mu_i \otimes x_i$, so that clearly $\operatorname{ca}(\Sigma, \ell_0^\infty) = \operatorname{cca}(\Sigma, \ell_0^\infty)$ can be represented as a (topological) subspace of $\operatorname{ca}(\Sigma) \otimes_{\varepsilon} \ell_0^\infty$. Since $\operatorname{ca}(\Sigma) \otimes_{\varepsilon} \ell_0^\infty$ embeds linearly into $\operatorname{cca}(\Sigma, \ell_0^\infty)$, it follows that

$$\operatorname{ca}(\Sigma,\ell_0^{\infty}) = \operatorname{cca}(\Sigma,\ell_0^{\infty}) = \operatorname{ca}(\Sigma) \otimes_{\varepsilon} \ell_0^{\infty} = \ell_0^{\infty} \left(2^{\mathbb{N}},\operatorname{ca}(\Sigma)\right).$$

Now, given that $ca(\Sigma)$ is an infinite-dimensional normed space, and a normed space is nuclear if and only if is finite-dimensional, Theorem 1 assures that

 $\ell_0^{\infty}(2^{\mathbb{N}}, \operatorname{ca}(\Sigma))$ is not a barrelled space. So we conclude that neither $\operatorname{ca}(\Sigma, \ell_0^{\infty})$ nor $\operatorname{cca}(\Sigma, \ell_0^{\infty})$ are barrelled.

3. Barrelled and non-barrelled L(X, Y) spaces

If X is a Banach space and Y is a non complete barrelled normed space, it turns out that there are non barrelled spaces of bounded linear operators $T: X \to Y$, as the following propositions shows.

Proposition 6. If X is an infinite-dimensional Banach space, the space $L(X, \ell_0^{\infty})$ equipped with the operator norm is not barrelled.

Proof. If $T \in L(X, \ell_0^{\infty})$ then, according to [1, Theorem 3(a)], the range of T is finite-dimensional. This forces to conclude that $L(X, \ell_0^{\infty})$ coincides with $X^* \otimes_{\varepsilon} \ell_0^{\infty}$. Indeed, on the one hand $X^* \otimes_{\varepsilon} \ell_0^{\infty}$ can be identified with the subspace of $L(X, \ell_0^{\infty})$ of all those linear operators T such that Im T is a finite-dimensional subspace of ℓ_0^{∞} and, on the other hand, given $T \in L(X, \ell_0^{\infty})$, since the range of T is finite-dimensional and the family $\{\chi_A : A \in 2^{\mathbb{N}}\}$ contains a Hamel basis of ℓ_0^{∞} , even a discrete one, there is a finite partition $\{A_1, \ldots, A_p\}$ of \mathbb{N} such that Im $T = \operatorname{span} \{\chi_{A_i} : 1 \leq i \leq p\}$, so that

$$Tx = \sum_{i=1}^{p} \alpha_i(x) \chi_{A_i}$$

for every $x \in X$, where $\alpha_i : X \to \mathbb{K}$ is a bounded linear form for $1 \leq i \leq p$. In fact α_i is clearly linear and there is K > 0 such that

$$|\alpha_{i}(x)| \leq \sup_{1 \leq j \leq p} |\alpha_{j}(x)| = \sup_{n \in \mathbb{N}} \left| \sum_{j=1}^{p} \alpha_{j}(x) \chi_{A_{j}}(n) \right| = ||Tx||_{\infty} \leq K ||x||_{\infty}.$$

So we can write $T = \sum_{i=1}^{p} x_i^* \otimes \chi_{A_i}$, with $x_i^* \in X^*$ for $1 \le i \le p$, verifying that

$$||T|| = \max \{ ||x_1^*||, \dots, ||x_p^*|| \} = \left\| \sum_{i=1}^p x_i^* \otimes \chi_{A_i} \right\|_{\varepsilon}.$$

Thus we have the following linear isometries

$$L(X, \ell_0^{\infty}) = X^* \otimes_{\varepsilon} \ell_0^{\infty} = \ell_0^{\infty} \left(2^{\mathbb{N}}, X^* \right).$$

Since X^* is an infinite-dimensional Banach space and the family $2^{\mathbb{N}}$ of all the subsets of \mathbb{N} is an infinite σ -algebra, it follows again from Theorem 1 that the space $\ell_0^{\infty}(2^{\mathbb{N}}, X^*)$ is not barrelled. Hence $L(X, \ell_0^{\infty})$ is a non barrelled operator space.

Proposition 7. If X is an infinite-dimensional Banach space, then the operator space $L_{w^*}(X^*, \ell_0^{\infty})$ is not barrelled.

Proof. Since each operator $T \in L_{w^*}(X^*, \ell_0^{\infty})$ is weak*-weakly continuous, standing for Q the closed unit ball of X^* then T(Q) is an absolutely convex weakly compact subset of ℓ_0^{∞} , whence T(Q) is a Banach disk of (ℓ_0^{∞})

 $\begin{aligned} &\sigma(\ell_0^\infty, \operatorname{ba}(2^{\mathbb{N}}))), \text{ hence of } (\ell_0^\infty, \sigma(\ell_0^\infty, \mathbb{K}^{(\mathbb{N})})). \text{ Since the linear span of every Ba-}\\ &\operatorname{nach disk of } (\ell_0^\infty, \sigma(\ell_0^\infty, \mathbb{K}^{(\mathbb{N})})) \text{ is finite-dimensional } [1, \text{ Theorem 3(b)}] \text{ (see also } [7, \operatorname{Corollary 6.2.5}]), \text{ it follows that the range of } T \text{ is a finite-dimensional subspace of } \ell_0^\infty. \text{ This implies that } L_{w^*}(X^*, \ell_0^\infty) = X \otimes_{\varepsilon} \ell_0^\infty = \ell_0^\infty (\mathbb{N}, X). \text{ Indeed } T \in L_{w^*}(X^*, \ell_0^\infty) \text{ if and only if there is a partition } \{A_1, \ldots, A_p\} \text{ of } \mathbb{N} \text{ such that } Tx^* = \sum_{i=1}^p \alpha_i(x^*) \chi_{A_i}, \text{ each } \alpha_i : X^* (\operatorname{weak}^*) \to \mathbb{K} \text{ being linear and continuous. Hence we can write } T = \sum_{i=1}^p x_i \otimes \chi_{A_i}, \text{ with } x_i \in X \text{ for } 1 \leq i \leq p. \text{ Since } X \text{ is infinite-dimensional, } \ell_0^\infty (2^{\mathbb{N}}, X) \text{ cannot barrelled. Therefore } L_{w^*}(X^*, \ell_0^\infty) \text{ is not barrelled.} \end{matrix}$

If $T \in W(X, \ell_0^{\infty})$ or $T \in K(X, \ell_0^{\infty})$, as before the range of T is a finitedimensional subspace of ℓ_0^{∞} , which implies that $W(X, \ell_0^{\infty}) = K(X, \ell_0^{\infty}) = X^* \otimes_{\varepsilon} \ell_0^{\infty} = \ell_0^{\infty} (2^{\mathbb{N}}, X^*)$. So if X is infinite-dimensional, again $\ell_0^{\infty} (2^{\mathbb{N}}, X^*)$ is not barrelled, whence nor $W(X, \ell_0^{\infty})$ neither $K(X, \ell_0^{\infty})$ is barrelled. However, the following positive result holds.

Theorem 8. Let X be a Banach space such that X^* is an \mathcal{L}^{∞} -space with the approximation property. If Y is the locally convex hull of a sequence of Banach subspaces (which cover it), then K(X,Y) is barrelled.

Proof. Assume that Y is the locally convex hull $\operatorname{ind}_{n\in\mathbb{N}} Y_n$ of a sequence $\{Y_n : n \in \mathbb{N}\}$ of Banach subspaces of $Y = \bigcup_{n=1}^{\infty} Y_n$. First observe that $K(X,Y) = \bigcup_{n=1}^{\infty} K(X,Y_n)$.

Let $T \in K(X, Y)$. If B_X denotes the unit ball of X, then $\overline{T(B_X)}^Y$ is an absolutely convex compact set of Y, hence a Banach disk of Y. Since $\{Y_n : n \in \mathbb{N}\}$ is a countable covering of Y by closed sets, the Baire category theorem provides $\epsilon > 0$ and $n_0 \in \mathbb{N}$ such that $\epsilon \overline{T(B_X)}^Y \subseteq Y_{n_0}$. Consequently $T \in K(X, Y_{n_0})$, so that $K(X, Y) = \bigcup_{n=1}^{\infty} K(X, Y_n)$.

Let us show that this implies that K(X, Y) is barrelled. Indeed, according to [9, 16.5 Proposition], the fact that X^* is a gDF-space ensures that $X^* \otimes_{\varepsilon} (\bigoplus_{n=1}^{\infty} Y_n)$ is canonically isomorphic to $\bigoplus_{n=1}^{\infty} (X^* \otimes_{\varepsilon} Y_n)$. So, since X^* is assumed to be an \mathcal{L}_{∞} -space, this yields a topological isomorphism from $\operatorname{ind}_{n \in \mathbb{N}} (X^* \otimes_{\varepsilon} Y_n)$ onto $X^* \otimes_{\varepsilon} Y$ in the canonical manner [9, 16.3.6 Remark]. Thus we have that

(3.1)
$$\operatorname{ind}_{n\in\mathbb{N}} (X^* \otimes_{\varepsilon} Y_n) = X^* \otimes_{\varepsilon} Y.$$

But since X^* has the approximation property, then $X^* \widehat{\otimes}_{\varepsilon} Y_n = K(X, Y_n)$ whereas $X^* \otimes_{\varepsilon} Y$ is isometric to a dense linear subspace of K(X,Y). Let U be a barrel of K(X,Y), i.e., a closed absolutely convex and absorbing set. Clearly U meets each subspace $K(X,Y_n)$ in a neighborhood of the origin in $K(X,Y_n)$, consequently U meets each $X^* \otimes_{\varepsilon} Y_n$ in a neighborhood of the origin in $X^* \otimes_{\varepsilon} Y_n$. But due to (3.1) this implies that U meets $X^* \otimes_{\varepsilon} Y$ in a neighborhood of the origin of $X^* \otimes_{\varepsilon} Y$. Since $X^* \otimes_{\varepsilon} Y$ is dense in K(X,Y)and U is closed in K(X,Y), it follows that U is a neighborhood of the origin in K(X, Y). In other words, since $\operatorname{ind}_{n \in \mathbb{N}} K(X, Y_n)$ is an ultrabornological (hence barrelled) dense subspace of K(X, Y), then K(X, Y) is itself barrelled. \Box

References

- J. Batt, P. Dierolf, and J. Voigt, Summable sequences and topological properties of m₀(I), Arch. Math. (Basel) 28 (1977), no. 1, 86–90.
- [2] J. C. Díaz, M. Florencio, and P. J. Paúl, A uniform boundedness theorem for $L_{\infty}(\mu, X)$, Arch. Math. (Basel) **60** (1993), no. 1, 73–78.
- [3] L. Drewnowski, M. Florencio, and P. J. Paúl, The space of Pettis integrable functions is barrelled, Proc. Amer. Math. Soc. 114 (1992), no. 3, 687–694.
- [4] _____, On the barrelledness of space of bounded vector functions, Arch. Math. 63 (1994), no. 5, 449–458.
- [5] J. C. Ferrando, On the barrelledness of the vector-valued bounded function space, J. Math. Anal. Appl. 184 (1994), no. 3, 437–440.
- [6] J. C. Ferrando, J. Kąkol, and M. López Pellicer, On a problem of Horváth concerning barrelled spaces of vector valued continuous functions vanishing at infinity, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 1, 127–132.
- [7] J. C. Ferrando, M. López Pellicer, and L. M. Sánchez Ruiz, *Metrizable Barrelled Spaces*, Pitman RNMS **332**, Longman, 1995.
- [8] F. J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), no. 4, 479–489.
- [9] H. Jarchow, Locally Convex Spaces, B. G. Teubner Stuttgart, 1981.
- [10] J. Kąkol, S. A. Saxon, and A. R. Todd, Barrelled spaces with(out) separable quotients, Bull. Austral. Math. Soc. 90 (2014), no. 2, 295–303.
- [11] G. Köthe, Topological Vector Spaces I, Springer-Verlag, New York Heidelberg Berlin, 1983.
- [12] J. Mendoza, Barrelledness conditions on $S(\Sigma, E)$ and $B(\Sigma, E)$, Math. Ann. **261** (1982), no. 1, 11–22.
- [13] _____, Necessary and sufficient conditions for C(X, E) to be barrelled or infrabarrelled, Simon Stevin **57** (1983), no. 1-2, 103–123.
- [14] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, SMM, London, 2002.
- [15] S. A. Saxon, Mackey hyperplanes enlargements for Tweddle's space, Rev. R. Acad. Cienc. Exactas Fis. Ser. A Math. RACSAM 108 (2014), no. 1, 1035–1054.
- [16] _____, Weak barrelledness versus P-spaces, Descriptive topology and functional analysis, 2732, Springer Proc. Math. Stat., 80, Springer, Cham, 2014.
- [17] J. Schmets, An example of the barrelled space associated to C (X, E), Lecture Notes in Math. 843, Functional Analysis, pp. 562–571, Holomorphy and Approximation Theory, Rio de Janeiro 1978, Springer-Verlag, 1981.

CENTRO DE INVESTIGACIÓN OPERATIVA UNIVERSIDAD MIGUEL HERNÁNDEZ E-03202 ELCHE (ALICANTE), SPAIN *E-mail address*: jc.ferrando@umh.es