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BARRELLEDNESS OF SOME SPACES OF VECTOR

MEASURES AND BOUNDED LINEAR OPERATORS

Juan Carlos Ferrando

Abstract. In this paper we investigate the barrellednes of some spaces
of X-valued measures, X being a barrelled normed space, and provide
examples of non barrelled spaces of bounded linear operators from a Ba-
nach space X into a barrelled normed space Y , equipped with the uniform
convergence topology.

1. Preliminaries

The barrelledness of certain spaces of vector-valued functions has been widely
studied, see [7, Chapters 8-10] and references therein. If K is a locally compact
Hausdorff space, (Ω,Σ) a measurable space, µ ∈ ca+ (Σ) and X a normed space
over the field K of the real or complex numbers, the following are among the
most beautiful results on this topic.

(1) The space B (Σ, X) overK of all those functions f : Ω → X that are the
uniform limit of a sequence of Σ-simple X-valued functions, equipped
with the supremum norm, is barrelled if and only if X is barrelled, [12].

(2) The space C (K,X) over K of all continuous functions f : K → X
endowed with the compact-open topology is barrelled if and only if
C (K) and X are barrelled, [13].

(3) If µ is atomless the space Lp (µ,X) over K, with 1 ≤ p ≤ ∞, of all
[classes of] strongly measurable functions f : Ω → X that are Bochner
integrable if 1 ≤ p < ∞, or essentially bounded if p = ∞, equipped
with the integral norm ‖f‖p or with the essential supremum norm

‖f‖∞, respectively, is barrelled ([2] and [3]), regardless X is barrelled
or not.
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(4) The space ℓ∞ (Σ, X) over K of all bounded Σ-measurable functions
f : Ω → X , equipped with the supremum norm, is barrelled if and only
if X is barrelled, [5].

(5) If X is a Banach space, the space P1 (µ,X) over K of all [classes of
scalarly equivalent] weakly µ-measurable and Pettis integrable func-
tions f : Ω → X , equipped with the so-called Pettis norm or semivari-
ation norm, is barrelled, as well as the subspace P1 (µ,X) of all [classes
of] strongly measurable functions, [3].

(6) The space ℓ∞ (Ω, X) over K of all bounded functions f : Ω → X ,
equipped with the supremum norm, is barrelled wheneverX is barrelled
and either |Ω| or |X | is a nonmeasurable cardinal, [4].

(7) If K is (locally compact and) normal, the space C0 (K,X) over K of all
continuous functions f : K → X vanishing at infinity, i.e., such that
for each ǫ > 0 there exists a compact set Kf,ǫ ⊆ K with the property
that ‖f (ω)‖ < ǫ for each ω ∈ K \Kf,ǫ, provided with the supremum
norm, is barrelled if and only if X is barrelled, [6].

Let us point out that B (Σ, X) coincides with the closure in ℓ∞ (Ω, X) of the
subspace ℓ∞0 (Σ, X) of ℓ∞ (Ω, X) consisting of all X-valued Σ-simple functions.
If X is separable then ℓ∞ (Ω, X) = ℓ∞

(
2Ω, X

)
. In the sequel we shall write

ℓ∞0 (Σ) instead of ℓ∞0 (Σ,K) and ℓ∞0 instead of ℓ∞0
(
2N
)
. Clearly, ℓ∞0 coincides

with the dense subspace of ℓ∞ of those sequences (ξn) of finite range. Regard-
less of Σ, the space ℓ∞0 (Σ) is always barrelled (see [7, Theorem 5.2.4]). If Γ is a
nonempty set, the linear space c0 (Γ, X) over K of all functions f : Γ → X such
that for each ǫ > 0 the set {ω ∈ Γ : ‖f (ω)‖ > ǫ} is finite, equipped with the
supremum norm, coincides with C0 (Γ, X) for discrete Γ, so that c0 (Γ, X) is
barrelled if and only if X is barrelled. We shall frequently require the following
result.

Theorem 1 (Freniche [8]). The space ℓ∞0 (Σ, E) of Σ-simple functions with

values in a Hausdorff locally convex space E, where Σ is an infinite σ-algebra
of subsets of a set Ω, endowed with the uniform convergence topology is barrelled

if and only if ℓ∞0 (Σ) and E are barrelled and E is nuclear.

Yet there are several spaces of vector-valued measures and of bounded lin-
ear operators which have received less attention. Next we investigate the bar-
relledness of some of them. Along this paper X will be a normed or a Banach
space, Y a normed space and (Ω,Σ) a nontrivial measurable space. If X is
a normed space, we denote by bvca (Σ, X) the linear space over K of count-
ably additive X-valued measures F : Σ → X of bounded variation equipped
with the variation norm |F | = |F | (Ω), where |F | (E) = sup

∑
A∈π ‖F (A)‖

and the supremum runs over all finite partitions π of E ∈ Σ by elements of
Σ. By ca (Σ, X) we represent the space of all X-valued countably additive
measures provided with the semivariation norm, and by cca (Σ, X) the sub-
space of ca (Σ, X) of those measures of relatively compact range. We denote
by L (X,Y ) the linear space over K of all bounded linear operators from X
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into Y equipped with the uniform convergence topology, and by K (X,Y ) the
subspace of L (X,Y ) of all those compact linear operators. By Lw∗ (X∗, Y )
we denote the subspace of L (X∗, Y ) of all weak*-weakly continuous operators
from X∗ into Y . The linear space of the weakly compact linear operators from
X into Y is denoted by W (X,Y ). Recall that spaces of vector-valued mea-
sures and spaces of linear operators are close related, and sometimes they are
representable by tensor products. For example, if X is a normed space then
ℓ∞0 (Σ, X) = ℓ∞0 (Σ) ⊗ε X and, if X is a Banach space, Lw∗

(
ca (Σ)

∗
, X
)
is

linearly isomorphic to ca (Σ, X), whereas cca (Σ, X) = ca (Σ) ⊗̂εX . Naturally,
if K is compact then C (K,X) = C (K) ⊗̂εX . If K = N ∪ {∞} is the Alexan-
droff compactification of the discrete space N and E is a linear space over K

of uncountable dimension provided with the strongest locally convex topology,
then C (K,E) is no longer barrelled, [17]. Research on barrelledness conditions
is still active (see [10, 15, 16]).

2. Barrelledness of some spaces of vector measures

LetX be a normed space. If µ ∈ ca+ (Σ), we shall represent by bvca (Σ, µ,X)
the linear subspace of bvca (Σ, X) consisting of all those vector measures that
are µ-continuous, whereas L1 (µ,X) will stand for the linear space over K of
all (equivalence classes of) strongly measurable X-valued Bochner integrable
functions defined on Ω endowed with the norm

‖f‖1 =

∫

Ω

‖f (ω)‖ dµ (ω) .

The linear map T : L1 (µ,X) → bvca (Σ, µ,X) defined by

(2.1) Tf (E) =

∫

E

f (ω) dµ (ω)

for E ∈ Σ is an isometry into since |Tf | = ‖f‖1. If X is a Banach space, T
becomes an isometry onto the whole of bvca (Σ, µ,X) if and only if X has the
Radon-Nikodým property with respect to µ.

Theorem 2. Assume that the completion X̂ of X has the Radon-Nikodým

property with respect to each µ ∈ ca+ (Σ). Then bvca (Σ, X) is barrelled if and

only if X is barrelled.

Proof. If X is barrelled and ω ∈ Ω, the standard map Pω : bvca (Σ, X) →
bvca (Σ, X) defined by PωF = F (Ω) δω is a bounded linear projection from
bvca (Σ, X) onto the copy {xδω : x ∈ X} of X within bvca (Σ, X). Since Pω is
a quotient map, then X is barrelled if bvca (Σ, X) does [9, 11.3.1 Proposition
(a)].

For the converse let us fix µ ∈ ca+ (Σ). If S1 (µ) denotes the barrelled
linear subspace of L1 (µ) of all (classes of) scalarly valued µ-simple functions
and S1 (µ,X) stands for the subspace of L1 (µ,X) consisting of the X-valued
µ-simple functions, the mapping ϕ : S1 (µ) ⊗π X → S1 (µ,X) obtained by
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linearizing the ansatz ϕ (χE ⊗ x) = χEx with E ∈ Σ and x ∈ X is an isometry.
This implies that the composition T ◦ ϕ is a linear isometry from S1 (µ)⊗π X

into a subspace of bvca(Σ, µ, X̂). But if xi ∈ X and Ei ∈ Σ for 1 ≤ i ≤ n then

(T ◦ ϕ)

(
n∑

i=1

χEi
⊗ xi

)
(A) =

n∑

i=1

∫

A

χEi
(ω) xi dµ (ω) =

n∑

i=1

µ (Ei ∩ A) xi ∈ X

for every A ∈ Σ, so that Im (T ◦ ϕ) ⊆ X . Hence actually T ◦ ϕ is a linear
isometry from S1 (µ)⊗π X into a subspace of bvca(Σ, µ,X).

Denote by S the canonical map (2.1) from L1(µ, X̂) into bvca(Σ, µ, X̂) and
reserve the letter T for the restriction of S to the subspace L1 (µ,X). Since

X̂ is supposed to have the Radon-Nikodým property with respect to µ, then S

maps isometrically L1(µ, X̂) onto bvca(Σ, µ, X̂). Given that S1 (µ,X) is a dense

subspace of S1(µ, X̂) and S1(µ, X̂) is dense in L1(µ, X̂), then S (S1 (µ,X)) =

(T ◦ ϕ) (S1 (µ)⊗π X) is a dense subspace of bvca(Σ, µ, X̂) contained in bvca(Σ,
µ,X). So we conclude that S1 (µ)⊗πX is linearly isometric to a dense subspace
of bvca (Σ, µ,X).

On the other hand, since each F ∈ bvca (Σ, X) is |F |-continuous we have

bvca (Σ, X) =
⋃{

bvca (Σ, µ,X) : µ ∈ ca+ (Σ)
}
.

Let us show that bvca (Σ, X) is the locally convex hull of {bvca (Σ, µ,X) : µ
∈ ca+ (Σ)}. Let U be an absolutely convex set of bvca (Σ, X) which meets
each bvca (Σ, µ,X) in a neighborhood of the origin in bvca (Σ, µ,X). We claim
that U is a neighborhood of the origin of bvca (Σ, X). Otherwise there exists
a normalized sequence {Fn}

∞

n=1 in bvca (Σ, X) such that Fn /∈ nU for each
n ∈ N. Since {Fn : n ∈ N} is bounded in bvca (Σ, X), then the scalar measure
ν :=

∑∞

n=1 2
−n |Fn| belongs to ca+ (Σ) and, consequently, Fn ∈ bvca (Σ, ν,X)

for every n ∈ N. But since U ∩ bvca (Σ, ν,X) is a neighborhood of the origin
in bvca (Σ, ν,X), there must exist m ∈ N such that Fm ∈ mU , a contradiction.

Since S1 (µ) and X are barrelled normed spaces, we have that S1 (µ)⊗πX is
barrelled too [7, Theorem 1.6.6], and since S1 (µ)⊗πX is linearly isometric to a
dense subspace of bvca (Σ, µ,X), then this latter subspace is also barrelled [11,
27.1.(2)]. Finally, the conclusion follows from the fact that the locally convex
hull of a family of barrelled spaces is barrelled [11, 27.1.(3)]. �

Remark 3. An alternative proof. The proof of the previous theorem solves

Problem 6 of [7, Chapter 8]. Another approach may be the following. If X̂
has the Radon-Nikodým property with respect to each µ ∈ ca+ (Σ), it can be

shown (cf. [14, Corollary 5.23]) that ca (Σ) ⊗̂π X = ca (Σ) ⊗̂π X̂ = bvca(Σ, X̂)
isometrically. But a careful reading of the proof of [14, Theorem 5.22] shows

that (under the assumption that X̂ has the Radon-Nikodým property with
respect to each µ ∈ ca+ (Σ)) even for normed spaces the projective product
space ca (Σ)⊗πX is in fact linearly isometric to a dense subspace of bvca (Σ, X).
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Since ca (Σ)⊗πX is barrelled if X is barrelled (cf. [7, Theorem 1.6.6]), it follows
that bvca(Σ, X) is barrelled if and only if X is barrelled.

Corollary 4. Let X be a normed space and suppose that each µ ∈ ca+ (Σ) is

purely atomic. Then bvca (Σ, X) is barrelled if and only if X is barrelled.

Proof. Since each µ ∈ ca+ (Σ) is purely atomic, the Banach space X̂ has the
Radon-Nikodým property with respect to every µ ∈ ca+ (Σ). So the previous
theorem applies. �

Theorem 5. Assume that the σ-algebra Σ is infinite. Then ca (Σ, ℓ∞0 ) =
cca (Σ, ℓ∞0 ) and neither ca (Σ, ℓ∞0 ) nor cca (Σ, ℓ∞0 ) are barrelled, despite the

fact that ℓ∞0 is barrelled.

Proof. Let F ∈ ca (Σ, ℓ∞0 ). Let us see first that F (Σ) is contained in a finite-
dimensional subspace of ℓ∞0 . Indeed, assume by contradiction that F (Σ) is
infinite-dimensional. In this case there is a sequence {En : n ∈ N} ⊆ Σ such
that the linear space span {F (En) : n ∈ N} is infinite-dimensional. Setting

A1 := E1 and An := En \
⋃n−1

i=1 Ai for n ≥ 2 as is frequently done, then
{An : n ∈ N} is a countable family of pairwise disjoint sets of Σ such that
F (En) =

∑n

i=1 F (Ai). Thus we have span {F (En) : n ∈ N} ⊆ span {F (An) :
n ∈ N}. But the series

∑∞

n=1 F (An) is subseries convergent in ℓ∞0 as a conse-
quence of the fact that

∑∞

i=1 F (Ani
) = F (

⋃∞

i=1 Ani
) ∈ ℓ∞0 for every increasing

sequence {ni}
∞

i=1 of positive integers. Thus, according to [1, Theorem 1(b)],
the linear subspace span {F (An) : n ∈ N} of ℓ∞0 must be finite-dimensional, a
contradiction.

Since F (Σ) is contained in a finite-dimensional subspace of ℓ∞0 and (because
of F is countably additive) the set F (Σ) is weakly compact, it follows that F (Σ)
is relatively compact in ℓ∞0 , which ensures that ca (Σ, ℓ∞0 ) = cca (Σ, ℓ∞0 ).

On the other hand, the fact that the range F (Σ) of F is finite-dimensional
also tells us that there is a finite family {B1, . . . , Bp} of pairwise disjoints ele-
ments of Σ, which depends on F , such that F (Σ) ⊆ span {F (B1) , . . . , F (Bp)}.
Consequently, the vector measure F must be of the form

F (E) =
p∑

i=1

µi (E)F (Bi) ,

where each µi : Σ → K is clearly a countably additive scalar measure, i.e.,
µi ∈ ca (Σ). Setting xi := F (Bi) for 1 ≤ i ≤ p, we see that we can represent
the measure F as a tensor product of the form F =

∑p

i=1 µi ⊗ xi, so that
clearly ca (Σ, ℓ∞0 ) = cca (Σ, ℓ∞0 ) can be represented as a (topological) subspace
of ca (Σ)⊗ε ℓ

∞
0 . Since ca (Σ)⊗ε ℓ

∞
0 embeds linearly into cca (Σ, ℓ∞0 ), it follows

that

ca (Σ, ℓ∞0 ) = cca (Σ, ℓ∞0 ) = ca (Σ)⊗ε ℓ
∞
0 = ℓ∞0

(
2N, ca (Σ)

)
.

Now, given that ca (Σ) is an infinite-dimensional normed space, and a normed
space is nuclear if and only if is finite-dimensional, Theorem 1 assures that
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ℓ∞0
(
2N, ca (Σ)

)
is not a barrelled space. So we conclude that neither ca (Σ, ℓ∞0 )

nor cca (Σ, ℓ∞0 ) are barrelled. �

3. Barrelled and non-barrelled L (X, Y ) spaces

If X is a Banach space and Y is a non complete barrelled normed space,
it turns out that there are non barrelled spaces of bounded linear operators
T : X → Y , as the following propositions shows.

Proposition 6. If X is an infinite-dimensional Banach space, the space

L (X, ℓ∞0 ) equipped with the operator norm is not barrelled.

Proof. If T ∈ L (X, ℓ∞0 ) then, according to [1, Theorem 3(a)], the range of
T is finite-dimensional. This forces to conclude that L (X, ℓ∞0 ) coincides with
X∗ ⊗ε ℓ∞0 . Indeed, on the one hand X∗ ⊗ε ℓ∞0 can be identified with the
subspace of L (X, ℓ∞0 ) of all those linear operators T such that ImT is a finite-
dimensional subspace of ℓ∞0 and, on the other hand, given T ∈ L (X, ℓ∞0 ), since
the range of T is finite-dimensional and the family

{
χA : A ∈ 2N

}
contains a

Hamel basis of ℓ∞0 , even a discrete one, there is a finite partition {A1, . . . , Ap}
of N such that ImT = span

{
χAi

: 1 ≤ i ≤ p
}
, so that

Tx =
p∑

i=1

αi (x)χAi

for every x ∈ X , where αi : X → K is a bounded linear form for 1 ≤ i ≤ p. In
fact αi is clearly linear and there is K > 0 such that

|αi (x)| ≤ sup
1≤j≤p

|αj (x)| = sup
n∈N

∣∣∣∣∣∣

p∑

j=1

αj (x)χAj
(n)

∣∣∣∣∣∣
= ‖Tx‖∞ ≤ K ‖x‖∞ .

So we can write T =
∑p

i=1 x
∗
i ⊗χAi

, with x∗
i ∈ X∗ for 1 ≤ i ≤ p, verifying that

‖T ‖ = max
{
‖x∗

1‖ , . . . ,
∥∥x∗

p

∥∥} =

∥∥∥∥
p∑

i=1

x∗
i ⊗ χAi

∥∥∥∥
ε

.

Thus we have the following linear isometries

L (X, ℓ∞0 ) = X∗ ⊗ε ℓ
∞
0 = ℓ∞0

(
2N, X∗

)
.

Since X∗ is an infinite-dimensional Banach space and the family 2N of all the
subsets of N is an infinite σ-algebra, it follows again from Theorem 1 that the
space ℓ∞0

(
2N, X∗

)
is not barrelled. Hence L (X, ℓ∞0 ) is a non barrelled operator

space. �

Proposition 7. If X is an infinite-dimensional Banach space, then the oper-

ator space Lw∗ (X∗, ℓ∞0 ) is not barrelled.

Proof. Since each operator T ∈ Lw∗ (X∗, ℓ∞0 ) is weak*-weakly continuous,
standing for Q the closed unit ball of X∗ then T (Q) is an absolutely con-
vex weakly compact subset of ℓ∞0 , whence T (Q) is a Banach disk of (ℓ∞0 ,
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σ(ℓ∞0 , ba(2N))), hence of (ℓ∞0 , σ(ℓ∞0 ,K(N))). Since the linear span of every Ba-
nach disk of (ℓ∞0 , σ(ℓ∞0 ,K(N))) is finite-dimensional [1, Theorem 3(b)] (see also
[7, Corollary 6.2.5]), it follows that the range of T is a finite-dimensional sub-
space of ℓ∞0 . This implies that Lw∗ (X∗, ℓ∞0 ) = X ⊗ε ℓ

∞
0 = ℓ∞0 (N, X). Indeed

T ∈ Lw∗ (X∗, ℓ∞0 ) if and only if there is a partition {A1, . . . , Ap} of N such that
Tx∗ =

∑p

i=1 αi (x
∗)χAi

, each αi : X
∗ (weak*) → K being linear and continu-

ous. Hence we can write T =
∑p

i=1 xi ⊗ χAi
, with xi ∈ X for 1 ≤ i ≤ p. Since

X is infinite-dimensional, ℓ∞0
(
2N, X

)
cannot barrelled. Therefore Lw∗ (X∗, ℓ∞0 )

is not barrelled. �

If T ∈ W (X, ℓ∞0 ) or T ∈ K (X, ℓ∞0 ), as before the range of T is a finite-
dimensional subspace of ℓ∞0 , which implies that W (X, ℓ∞0 ) = K (X, ℓ∞0 ) =
X∗ ⊗ε ℓ

∞
0 = ℓ∞0

(
2N, X∗

)
. So if X is infinite-dimensional, again ℓ∞0

(
2N, X∗

)
is

not barrelled, whence nor W (X, ℓ∞0 ) neither K (X, ℓ∞0 ) is barrelled. However,
the following positive result holds.

Theorem 8. Let X be a Banach space such that X∗ is an L∞-space with the

approximation property. If Y is the locally convex hull of a sequence of Banach

subspaces (which cover it), then K (X,Y ) is barrelled.

Proof. Assume that Y is the locally convex hull indn∈N Yn of a sequence {Yn :
n ∈ N} of Banach subspaces of Y =

⋃∞

n=1 Yn. First observe that K (X,Y ) =⋃∞

n=1 K (X,Yn).

Let T ∈ K (X,Y ). If BX denotes the unit ball of X , then T (BX)
Y

is
an absolutely convex compact set of Y , hence a Banach disk of Y . Since
{Yn : n ∈ N} is a countable covering of Y by closed sets, the Baire category

theorem provides ǫ > 0 and n0 ∈ N such that ǫT (BX)
Y
⊆ Yn0

. Consequently
T ∈ K (X,Yn0

), so that K (X,Y ) =
⋃∞

n=1 K (X,Yn).
Let us show that this implies that K (X,Y ) is barrelled. Indeed, accord-

ing to [9, 16.5 Proposition], the fact that X∗ is a gDF -space ensures that
X∗ ⊗ε (⊕

∞
n=1Yn) is canonically isomorphic to ⊕∞

n=1 (X
∗ ⊗ε Yn). So, since X∗

is assumed to be an L∞-space, this yields a topological isomorphism from
indn∈N (X∗ ⊗ε Yn) onto X∗ ⊗ε Y in the canonical manner [9, 16.3.6 Remark].
Thus we have that

(3.1) indn∈N (X∗ ⊗ε Yn) = X∗ ⊗ε Y.

But since X∗ has the approximation property, then X∗⊗̂εYn = K (X,Yn)
whereas X∗ ⊗ε Y is isometric to a dense linear subspace of K (X,Y ). Let
U be a barrel of K (X,Y ), i.e., a closed absolutely convex and absorbing set.
Clearly U meets each subspace K (X,Yn) in a neighborhood of the origin in
K (X,Yn), consequently U meets each X∗ ⊗ε Yn in a neighborhood of the ori-
gin in X∗ ⊗ε Yn. But due to (3.1) this implies that U meets X∗ ⊗ε Y in a
neighborhood of the origin of X∗ ⊗ε Y . Since X∗ ⊗ε Y is dense in K (X,Y )
and U is closed in K (X,Y ), it follows that U is a neighborhood of the origin in
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K (X,Y ). In other words, since indn∈N K (X,Yn) is an ultrabornological (hence
barrelled) dense subspace of K (X,Y ), then K (X,Y ) is itself barrelled. �
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