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BARRELLEDNESS OF SOME SPACES OF VECTOR
MEASURES AND BOUNDED LINEAR OPERATORS

JUAN CARLOS FERRANDO

ABSTRACT. In this paper we investigate the barrellednes of some spaces
of X-valued measures, X being a barrelled normed space, and provide
examples of non barrelled spaces of bounded linear operators from a Ba-
nach space X into a barrelled normed space Y, equipped with the uniform
convergence topology.

1. Preliminaries

The barrelledness of certain spaces of vector-valued functions has been widely
studied, see [7, Chapters 8-10] and references therein. If K is a locally compact
Hausdorff space, (£2, ) a measurable space, p € ca™ () and X a normed space
over the field K of the real or complex numbers, the following are among the
most beautiful results on this topic.

(1) The space B (X, X) over K of all those functions f : Q@ — X that are the
uniform limit of a sequence of -simple X-valued functions, equipped
with the supremum norm, is barrelled if and only if X is barrelled, [12].

(2) The space C (K, X) over K of all continuous functions f : K — X
endowed with the compact-open topology is barrelled if and only if
C (K) and X are barrelled, [13].

(3) If p is atomless the space Ly (11, X) over K, with 1 < p < o0, of all
[classes of] strongly measurable functions f : Q@ — X that are Bochner
integrable if 1 < p < oo, or essentially bounded if p = oo, equipped
with the integral norm ||f||, or with the essential supremum norm
| f]l, respectively, is barrelled ([2] and [3]), regardless X is barrelled
or not.
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(4) The space £ (X, X) over K of all bounded ¥-measurable functions
f:Q — X, equipped with the supremum norm, is barrelled if and only
if X is barrelled, [5].

(5) If X is a Banach space, the space P; (u, X) over K of all [classes of
scalarly equivalent] weakly p-measurable and Pettis integrable func-
tions f : Q2 — X, equipped with the so-called Pettis norm or semivari-
ation norm, is barrelled, as well as the subspace P; (i, X) of all [classes
of] strongly measurable functions, [3].

(6) The space £o (2, X) over K of all bounded functions f : @ — X,
equipped with the supremum norm, is barrelled whenever X is barrelled
and either || or | X| is a nonmeasurable cardinal, [4].

(7) If K is (locally compact and) normal, the space Cp (K, X) over K of all
continuous functions f : K — X vanishing at infinity, i.e., such that
for each € > 0 there exists a compact set K¢ C K with the property
that || f (w)|| < € for each w € K \ Ky, provided with the supremum
norm, is barrelled if and only if X is barrelled, [6].

Let us point out that B (X, X) coincides with the closure in ¢, (2, X) of the
subspace £ (X, X) of £o (2, X) consisting of all X-valued ¥-simple functions.
If X is separable then £ (2, X) = lo (QQ,X). In the sequel we shall write
€3 (2) instead of £ (X, K) and £§° instead of £3° (2V). Clearly, £ coincides
with the dense subspace of £ of those sequences (&,,) of finite range. Regard-
less of X, the space £5° (X)) is always barrelled (see [7, Theorem 5.2.4]). If " is a
nonempty set, the linear space ¢ (I', X ) over K of all functions f : ' — X such
that for each € > 0 the set {w € T : || f (w)|| > €} is finite, equipped with the
supremum norm, coincides with Cy (T', X) for discrete I, so that ¢o (', X) is
barrelled if and only if X is barrelled. We shall frequently require the following
result.

Theorem 1 (Freniche [8]). The space £F (X, E) of X-simple functions with
values in a Hausdorff locally convex space E, where ¥ is an infinite o-algebra
of subsets of a set 2, endowed with the uniform convergence topology is barrelled
if and only if £5° (X) and E are barrelled and E is nuclear.

Yet there are several spaces of vector-valued measures and of bounded lin-
ear operators which have received less attention. Next we investigate the bar-
relledness of some of them. Along this paper X will be a normed or a Banach
space, Y a normed space and (£2,X) a nontrivial measurable space. If X is
a normed space, we denote by bvca (3, X) the linear space over K of count-
ably additive X-valued measures F' : ¥ — X of bounded variation equipped
with the variation norm |F| = |F|(Q), where |F|(E) = sup_ ., [[F (A)]l
and the supremum runs over all finite partitions w of ¥ € ¥ by elements of
Y. By ca(X,X) we represent the space of all X-valued countably additive
measures provided with the semivariation norm, and by cca (X, X) the sub-
space of ca (X, X) of those measures of relatively compact range. We denote
by L(X,Y) the linear space over K of all bounded linear operators from X
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into Y equipped with the uniform convergence topology, and by K (X,Y) the
subspace of L (X,Y) of all those compact linear operators. By L~ (X*,Y)
we denote the subspace of L (X*,Y) of all weak*-weakly continuous operators
from X* into Y. The linear space of the weakly compact linear operators from
X into Y is denoted by W (X,Y). Recall that spaces of vector-valued mea-
sures and spaces of linear operators are close related, and sometimes they are
representable by tensor products. For example, if X is a normed space then
(P (8,X) = 4r (X) ® X and, if X is a Banach space, Ly~ (ca(E)* ,X) is
linearly isomorphic to ca (X, X), whereas cca (X, X) = ca (¥) ®.X. Naturally,
if K is compact then C (K, X) = C (K) ®.X. If K = NU {oc} is the Alexan-
droff compactification of the discrete space N and E is a linear space over K
of uncountable dimension provided with the strongest locally convex topology,
then C (K, F) is no longer barrelled, [17]. Research on barrelledness conditions
is still active (see [10, 15, 16]).

2. Barrelledness of some spaces of vector measures

Let X be anormed space. If 1 € ca™ (3), we shall represent by bvca (3, u, X)
the linear subspace of bvca (3, X) consisting of all those vector measures that
are p-continuous, whereas L (p, X) will stand for the linear space over K of
all (equivalence classes of) strongly measurable X-valued Bochner integrable
functions defined on €2 endowed with the norm

11 = [ 1 @)ldu ).

The linear map T : Ly (u, X) — bvca (2, u, X) defined by
(2.1) B)= [ £ du(e

for E € ¥ is an isometry into since |T'f| = ||f||;. If X is a Banach space, T
becomes an isometry onto the whole of bvea (X, 1, X) if and only if X has the
Radon-Nikodym property with respect to u.

Theorem 2. Assume that the completion X of X has the Radon-Nikodym
property with respect to each p € ca™ (). Then bvca (X, X) is barrelled if and
only if X is barrelled.

Proof. If X is barrelled and w € Q, the standard map P, : bvca (X, X) —
bvca (X, X) defined by P,F = F ()4, is a bounded linear projection from
bvca (X, X) onto the copy {zd, : € X} of X within bvea (X, X). Since P, is
a quotient map, then X is barrelled if bvca (X, X) does [9, 11.3.1 Proposition
(@)

For the converse let us fix u € ca®™ (¥). If Sy (u) denotes the barrelled
linear subspace of L (u) of all (classes of) scalarly valued p-simple functions
and S (i, X) stands for the subspace of L; (1, X) consisting of the X-valued
p-simple functions, the mapping ¢ : S1 (1) ®x X — S1 (1, X) obtained by
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linearizing the ansatz ¢ (xp ® ) = xpz with £ € ¥ and « € X is an isometry.
This implies that the composition T o ¢ is a linear isometry from S (p) @, X
into a subspace of bvea(X, u, X). But if z; € X and E; € ¥ for 1 <i < n then

(T o p) (ZXE ®xl> (A):Z/Ain (w) xidu(w):Zu(EiﬂA)xieX

for every A € ¥, so that Im (T o) C X. Hence actually T o ¢ is a linear
isometry from S; (1) ®~ X into a subspace of bvca(E w, X).

Denote by S the canonical map (2.1) from L (11, X) into bvea(Z, u, X) and
reserve the letter T for the restriction of S to the subspace L (u, X). Since
X is supposed to have the Radon—leodym property with respect to u, then S
maps isometrically L1 (u, X) onto  bvea(X, p, X). Given that Sy (p, X) is a dense
subspace of Sy (i, X) and Sy (i, X) is dense in Ly (i, X), then S (S (p, X)) =
(T 0 ) (Sy (1) ®x X) is a dense subspace of bvca(3, y, X ) contained in bvca(S
1, X). So we conclude that S; (1) ®, X is linearly isometric to a dense subspace
of bvea (%, u, X).

On the other hand, since each F' € bvca (3, X) is |F|-continuous we have

bveca (2, X) U{bvca (1, X) :p€cat (D)}.

Let us show that bvca (2, X) is the locally convex hull of {bvca (3, u, X): u
€ cat (2)}. Let U be an absolutely convex set of bvca (3, X) which meets
each bvca (3, i, X) in a neighborhood of the origin in bvea (3, i, X). We claim
that U is a neighborhood of the origin of bvca (3, X). Otherwise there exists
a normalized sequence {F,} ~, in bvca (X, X) such that F,, ¢ nU for each
n € N. Since {F}, : n € N} is bounded in bveca (X, X), then the scalar measure
vi=y > 27" |F,| belongs to ca® (X) and, consequently, F,, € bvca (X, v, X)
for every n € N. But since U Nbvca (X, v, X) is a neighborhood of the origin
in bvea (X, v, X), there must exist m € N such that F,, € mU, a contradiction.

Since S1 (1) and X are barrelled normed spaces, we have that S1 (1) ®, X is
barrelled too [7, Theorem 1.6.6], and since S; (1) ®, X is linearly isometric to a
dense subspace of bvca (3, u, X ), then this latter subspace is also barrelled [11,
27.1.(2)]. Finally, the conclusion follows from the fact that the locally convex
hull of a family of barrelled spaces is barrelled [11, 27.1.(3)]. O

Remark 3. An alternative proof. The proof of the previous theorem solves
Problem 6 of [7, Chapter 8]. Another approach may be the following. If X
has the Radon-Nikodym property with respect to each p € ca™ (), it can be
shown (cf. [14, Corollary 5.23]) that ca (2) &, X = ca (%) @, X = bvca(X, X)
isometrically. But a careful reading of the proof of [14, Theorem 5.22] shows
that (under the assumption that X has the Radon-Nikodym property with
respect to each pu € ca™ (X)) even for normed spaces the projective product
space ca (X)®, X is in fact linearly isometric to a dense subspace of bvca (2, X).
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Since ca (X)®, X is barrelled if X is barrelled (cf. [7, Theorem 1.6.6]), it follows
that bvca(3, X) is barrelled if and only if X is barrelled.

Corollary 4. Let X be a normed space and suppose that each p € ca™ (X) is
purely atomic. Then bvea (X, X) is barrelled if and only if X is barrelled.

Proof. Since each p € ca™ () is purely atomic, the Banach space X has the
Radon-Nikodym property with respect to every u € ca™ (2). So the previous
theorem applies. (I

Theorem 5. Assume that the o-algebra ¥ is infinite. Then ca (X, 05°) =
cca (X, 65°) and neither ca (X, €3°) nor cca(X3,€5°) are barrelled, despite the
fact that £5° is barrelled.

Proof. Let F' € ca(X,£3°). Let us see first that F'(X) is contained in a finite-
dimensional subspace of ¢5°. Indeed, assume by contradiction that F'(X) is
infinite-dimensional. In this case there is a sequence {E, : n € N} C X such
that the linear space span{F (E,):n € N} is infinite-dimensional. Setting
Ay = Fy and A, = E, \ U?;ll A; for n > 2 as is frequently done, then
{4, :n € N} is a countable family of pairwise disjoint sets of ¥ such that
F(E,) =", F(A;). Thus we have span{F (E,) : n € N} C span{F (4,) :
n € N}. But the series Y ° | F'(A,) is subseries convergent in £3° as a conse-
quence of the fact that Y .o F (Ay,) = F (U;2; An,) € €5° for every increasing
sequence {n;}.-, of positive integers. Thus, according to [1, Theorem 1(b)],
the linear subspace span{F (4,) : n € N} of £3° must be finite-dimensional, a
contradiction.

Since F (¥) is contained in a finite-dimensional subspace of £5° and (because
of Fis countably additive) the set F' (%) is weakly compact, it follows that F' (X)
is relatively compact in £5°, which ensures that ca (X, £5°) = cca (X, £°).

On the other hand, the fact that the range F (X) of F is finite-dimensional
also tells us that there is a finite family {Bi,..., B,} of pairwise disjoints ele-
ments of 3, which depends on F, such that F' (X) C span{F (B1),...,F (Bp)}.
Consequently, the vector measure F' must be of the form

F(B) = gu (E)F (B,).

where each p; : ¥ — K is clearly a countably additive scalar measure, i.e.,
u; € ca(X). Setting z; := F (B;) for 1 < i < p, we see that we can represent
the measure F' as a tensor product of the form F = >" | p;, ® x;, so that
clearly ca (X, £3°) = cca (3, £5°) can be represented as a (topological) subspace
of ca () ®. £5°. Since ca (X) ®. £5° embeds linearly into cca (X, £5°), it follows
that
ca (2, £5°) = cca (X, 47) = ca (X)) ®. £3° = £ (2V, ca (X))

Now, given that ca (X) is an infinite-dimensional normed space, and a normed
space is nuclear if and only if is finite-dimensional, Theorem 1 assures that
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5° (2V, ca (X)) is not a barrelled space. So we conclude that neither ca (X, £3°)
nor cca (X, £5°) are barrelled. O

3. Barrelled and non-barrelled L (X,Y’) spaces

If X is a Banach space and Y is a non complete barrelled normed space,
it turns out that there are non barrelled spaces of bounded linear operators
T:X — Y, as the following propositions shows.

Proposition 6. If X is an infinite-dimensional Banach space, the space
L (X, 03) equipped with the operator norm is not barrelled.

Proof. f T € L(X,{5°) then, according to [1, Theorem 3(a)], the range of
T is finite-dimensional. This forces to conclude that L (X, £5°) coincides with
X* ®: £5°. Indeed, on the one hand X* ®. £5° can be identified with the
subspace of L (X, £5°) of all those linear operators T" such that Im T is a finite-
dimensional subspace of ¢3° and, on the other hand, given T' € L (X, £5°), since
the range of T is finite-dimensional and the family { Xa:AE€E 2N} contains a
Hamel basis of £5°, even a discrete one, there is a finite partition {A1,..., 4,}
of N such that ImT = span{xAi 1< < p}, so that

p
Tz= 3 a;(z) XA;
=1

for every x € X, where «; : X — K is a bounded linear form for 1 <i < p. In
fact «; is clearly linear and there is K > 0 such that

14
s (2)[ < sup oy (z)] = sup Yo aj (@) xa, ()| = Izl < K ||,
n i=1

S
1<5<p

So we can write T = Y7 | a¥ ®Xa,, with z7 € X* for 1 <1 < p, verifying that

'
170 = max {23, [le5|} = Hz ® s,
2

£

Thus we have the following linear isometries
L(X,60) = X" @ 63° =£3° (2Y, X7).

Since X* is an infinite-dimensional Banach space and the family 2V of all the
subsets of N is an infinite o-algebra, it follows again from Theorem 1 that the
space £3° (2N, X *) is not barrelled. Hence L (X, £3°) is a non barrelled operator
space. O

Proposition 7. If X is an infinite-dimensional Banach space, then the oper-
ator space Ly« (X*,45°) is not barrelled.

Proof. Since each operator T € Ly~ (X*,03°) is weak*-weakly continuous,
standing for @ the closed unit ball of X* then T (Q) is an absolutely con-
vex weakly compact subset of ¢5°, whence T (Q) is a Banach disk of (¢5°,
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o (£5°,ba(2V))), hence of (£5°,0(£5°, KM)). Since the linear span of every Ba-
nach disk of (¢5°,0(¢5°, K™)) is finite-dimensional [1, Theorem 3(b)] (see also
[7, Corollary 6.2.5]), it follows that the range of T is a finite-dimensional sub-
space of £§°. This implies that L« (X*,€5°) = X ®. £5° = £5° (N, X). Indeed
T € Ly (X*,£3) if and only if there is a partition {44, ..., A,} of N such that
Tz* =37 a;(2%) xa,, each a; : X* (weak*) — K being linear and continu-
ous. Hence we can write T'= Y7 | #; ® x 4,, with 2; € X for 1 <4 < p. Since
X is infinite-dimensional, £5° (2N, X ) cannot barrelled. Therefore Ly« (X*, £3°)
is not barrelled. g

IfT e W(X, ) or T € K(X,¢5°), as before the range of T is a finite-
dimensional subspace of ¢5°, which implies that W (X, £5°) = K (X, () =
X* ® 4 = £ (2V,X*). So if X is infinite-dimensional, again £5° (2N, X*) is
not barrelled, whence nor W (X, ¢3°) neither K (X, ¢5°) is barrelled. However,
the following positive result holds.

Theorem 8. Let X be a Banach space such that X* is an L°°-space with the
approzimation property. If Y is the locally convex hull of a sequence of Banach
subspaces (which cover it), then K (X,Y) is barrelled.

Proof. Assume that Y is the locally convex hull ind,en Y, of a sequence {Y, :
n € N} of Banach subspaces of Y = |J,~, Y,,. First observe that K (X,Y) =
Uzo:1 K (Xa Yn)

Let T € K (X,Y). If By denotes the unit ball of X, then T (Byx)  is
an absolutely convex compact set of Y, hence a Banach disk of Y. Since
{Y,, : n € N} is a countable covering of Y by closed sets, the Baire category

theorem provides € > 0 and ng € N such that €' (Bx) CY,,. Consequently
T € K (X,Y,,), so that K (X,Y) =), K (X,Y,).

Let us show that this implies that K (X,Y) is barrelled. Indeed, accord-
ing to [9, 16.5 Proposition], the fact that X* is a gDF-space ensures that
X* ®: (922,Y,,) is canonically isomorphic to &2 ; (X* ®.Y,). So, since X*
is assumed to be an L..-space, this yields a topological isomorphism from
indpen (X* ®c Yy,) onto X* ®. Y in the canonical manner [9, 16.3.6 Remark].
Thus we have that

(3.1) indpen (X* ®.Y,) = X* ®. Y.

But since X* has the approximation property, then X*®.Y, = K (X,Yn)
whereas X* ®. Y is isometric to a dense linear subspace of K (X,Y). Let
U be a barrel of K (X,Y), i.e., a closed absolutely convex and absorbing set.
Clearly U meets each subspace K (X,Y,,) in a neighborhood of the origin in
K (X,Y,), consequently U meets each X* ®. Y,, in a neighborhood of the ori-
gin in X* ®. Y,,. But due to (3.1) this implies that U meets X* ®. Y in a
neighborhood of the origin of X* ®. Y. Since X* ®. Y is dense in K (X,Y)
and U is closed in K (X,Y), it follows that U is a neighborhood of the origin in



158

K

6 JUAN CARLOS FERRANDO

(X,Y). In other words, since ind, ey K (X,Y,,) is an ultrabornological (hence

barrelled) dense subspace of K (X,Y), then K (X,Y) is itself barrelled. O
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