• Title/Summary/Keyword: space of measurable functions

Search Result 28, Processing Time 0.024 seconds

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

DISTRIBUTIONAL SOLUTIONS OF WILSON'S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS' PROBLEM

  • Chung, Jaeyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1157-1169
    • /
    • 2016
  • We find the distributional solutions of the Wilson's functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v=0,\\u{\circ}T+u{\circ}T^{\sigma}-2v{\otimes}u=0,$$ where $u,v{\in}{\mathcal{D}}^{\prime}({\mathbb{R}}^n)$, the space of Schwartz distributions, T(x, y) = x + y, $T^{\sigma}(x,y)=x+{\sigma}y$, $x,y{\in}{\mathbb{R}}^n$, ${\sigma}$ an involution, and ${\circ}$, ${\otimes}$ are pullback and tensor product of distributions, respectively. As a consequence, we solve the $Erd{\ddot{o}}s$' problem for the Wilson's functional equations in the class of locally integrable functions. We also consider the Ulam-Hyers stability of the classical Wilson's functional equations $$f(x+y)+f(x+{\sigma}y)=2f(x)g(y),\\f(x+y)+f(x+{\sigma}y)=2g(x)f(y)$$ in the class of Lebesgue measurable functions.

APPROXIMATE CONVEXITY WITH RESPECT TO INTEGRAL ARITHMETIC MEAN

  • Zoldak, Marek
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1829-1839
    • /
    • 2014
  • Let (${\Omega}$, $\mathcal{S}$, ${\mu}$) be a probabilistic measure space, ${\varepsilon}{\in}\mathbb{R}$, ${\delta}{\geq}0$, p > 0 be given numbers and let $P{\subset}\mathbb{R}$ be an open interval. We consider a class of functions $f:P{\rightarrow}\mathbb{R}$, satisfying the inequality $$f(EX){\leq}E(f{\circ}X)+{\varepsilon}E({\mid}X-EX{\mid}^p)+{\delta}$$ for each $\mathcal{S}$-measurable simple function $X:{\Omega}{\rightarrow}P$. We show that if additionally the set of values of ${\mu}$ is equal to [0, 1] then $f:P{\rightarrow}\mathbb{R}$ satisfies the above condition if and only if $$f(tx+(1-t)y){\leq}tf(x)+(1-t)f(y)+{\varepsilon}[(1-t)^pt+t^p(1-t)]{\mid}x-y{\mid}^p+{\delta}$$ for $x,y{\in}P$, $t{\in}[0,1]$. We also prove some basic properties of such functions, e.g. the existence of subdifferentials, Hermite-Hadamard inequality.

EVALUATION OF SOME CONDITIONAL WIENER INTEGRALS

  • Chang, Kun-Soo;Chang, Joo-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.99-106
    • /
    • 1984
  • J. Yeh has recently introduced the concept of conditional Wiener integrals which are meant specifically the conditional expectation E$^{w}$ (Z vertical bar X) of a real or complex valued Wiener integrable functional Z conditioned by the Wiener measurable functional X on the Wiener measure space (A precise definition of the conditional Wiener integral and a brief discussion of the Wiener measure space are given in Section 2). In [3] and [4] he derived some inversion formulae for conditional Wiener integrals and evaluated some conditional Wiener integrals E$^{w}$ (Z vertical bar X) conditioned by X(x)=x(t) for a fixed t>0 and x in Wiener space. Thus E$^{w}$ (Z vertical bar X) is a real or complex valued function on R$^{1}$. In this paper we shall be concerned with the random vector X given by X(x) = (x(s$_{1}$),..,x(s$_{n}$ )) for every x in Wiener space where 0=s$_{0}$ $_{1}$<..$_{n}$ =t. In Section 3 we will evaluate some conditional Wiener integrals E$^{w}$ (Z vertical bar X) which are real or complex valued functions on the n-dimensional Euclidean space R$^{n}$ . Thus we extend Yeh's results [4] for the random variable X given by X(x)=x(t) to the random vector X given by X(x)=(x(s$_{1}$).., x(s$_{n}$ )).

  • PDF

ON THE DOMAIN OF NULL-CONTROLLABILITY OF A LINEAR PERIODIC SYSTEM

  • Yoon, Byung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.95-98
    • /
    • 1985
  • In [1], E.B. Lee and L. Markus described a sufficient condition for which the domain of null-controllability of a linear autonomous system is all of R$^{n}$ . The purpose of this note is to extend the result to a certain linear nonautonomous system. Thus we consider a linear control system dx/dt = A(t)x+B(t)u in the Eculidean n-space R$^{n}$ where A(t) and B(t) are n*n and n*m matrices, respectively, which are continuous on 0.leq.t<.inf. and A(t) is a periodic matrix of period .omega.. Admissible controls are bounded measurable functions defined on some finite subintervals of [0, .inf.) having values in a certain convex set .ohm. in R$^{m}$ with the origin in its interior. And we present a sufficient condition for which the domain of null-controllability is all of R$^{n}$ .

  • PDF

A poisson equation associated with an integral kernel operator

  • Kang, Soon-Ja
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.367-375
    • /
    • 1996
  • Suppose the kernel function $\kappa$ belongs to $S(R^2)$ and is symmetric such that $ < \otimes x, \kappa >\geq 0$ for all $x \in S'(R)$. Let A be the class of functions f such that the function f is measurable on $S'(R)$ with $\int_{S'(R)}$\mid$f((I + tK)^{\frac{1}{2}}x$\mid$^2d\mu(x) < M$ for some $M > 0$ and for all t > 0, where K is the integral operator with kernel function $\kappa$. We show that the \lambda$-potential $G_Kf$ of f is a weak solution of $(\lambda I - \frac{1}{2} \tilde{\Xi}_{0,2}(\kappa))_u = f$.

  • PDF

PETTIS INTEGRABILITY

  • Rim, Dong Il;Kim, Jin Yee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.161-166
    • /
    • 1995
  • Let (${\Omega}$, ${\Sigma}$, ${\mu}$) be a finite perfect measure space, and let $f:{\Omega}{\rightarrow}X$ be strongly measurable. f is Pettis integrable if and only if there is a sequence ($f_n$) of Pettis integrable functions from ${\Omega}$ into X such that (a) there is a positive increasing function ${\phi}$ defined on [0, ${\infty}$) such that ${\lim}_{t{\rightarrow}{\infty}}\frac{{\phi}(t)}{t}={\infty}$ and sup $f_{\Omega}{\phi}({\mid}x^*f_n{\mid})d{\mu}$ < ${\infty}$ for each $x^*{\in}B_{X*}$,$n{\in}N$, and (b) for each $x^*{\in}X^*$, $lim_{n{\rightarrow}{\infty}}x^*f_n=x^*fa.e.$.

  • PDF

A GENERIC RESEARCH ON NONLINEAR NON-CONVOLUTION TYPE SINGULAR INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Guller, Ozge Ozalp;Ibikli, Ertan
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.545-565
    • /
    • 2016
  • In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form: $$T_{\lambda}(f;x)={\large\int_{\Omega}}K_{\lambda}(t,x,f(t))dt,\;x{\in}{\Psi},\;{\lambda}{\in}{\Lambda}$$, where ${\Psi}$ = and ${\Omega}$ = stand for arbitrary closed, semi-closed or open bounded intervals in ${\mathbb{R}}$ or these set notations denote $\mathbb{R}$, and ${\Lambda}$ is a set of non-negative numbers, to the function $f{\in}L_{p,{\omega}}({\Omega})$, where $L_{p,{\omega}}({\Omega})$ denotes the space of all measurable functions f for which $\|{\frac{f}{\omega}}\|^p$ (1 ${\leq}$ p < ${\infty}$) is integrable on ${\Omega}$, and ${\omega}:{\mathbb{R}}{\rightarrow}\mathbb{R}^+$ is a weight function satisfying some conditions.