Browse > Article
http://dx.doi.org/10.4134/BKMS.b150584

DISTRIBUTIONAL SOLUTIONS OF WILSON'S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS' PROBLEM  

Chung, Jaeyoung (Department of Mathematics Kunsan National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.53, no.4, 2016 , pp. 1157-1169 More about this Journal
Abstract
We find the distributional solutions of the Wilson's functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v=0,\\u{\circ}T+u{\circ}T^{\sigma}-2v{\otimes}u=0,$$ where $u,v{\in}{\mathcal{D}}^{\prime}({\mathbb{R}}^n)$, the space of Schwartz distributions, T(x, y) = x + y, $T^{\sigma}(x,y)=x+{\sigma}y$, $x,y{\in}{\mathbb{R}}^n$, ${\sigma}$ an involution, and ${\circ}$, ${\otimes}$ are pullback and tensor product of distributions, respectively. As a consequence, we solve the $Erd{\ddot{o}}s$' problem for the Wilson's functional equations in the class of locally integrable functions. We also consider the Ulam-Hyers stability of the classical Wilson's functional equations $$f(x+y)+f(x+{\sigma}y)=2f(x)g(y),\\f(x+y)+f(x+{\sigma}y)=2g(x)f(y)$$ in the class of Lebesgue measurable functions.
Keywords
d'Alembert's functional equation; distributions; exponential function; Gelfand generalized function; involution; Wilson's functional equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Aczel, Lectures on Functional Equations and Their Applications, Dover Publications Inc., New York 2006.
2 J. Aczel, J. K. Chung, and C. T. Ng, Symmetric second differences in product form on groups, Topics in mathematical analysis, 1-22, Ser. Pure Math., 11, World Sci. Publ., Teaneck, NJ, 1989.
3 T. Angheluta, Asupra unei ecuatii functionale cu trei functii necunoscute, Lucr. Sti. Inst. Politehn. Astr. 5 (1960), 23-30.
4 A. Bahyrycz and J. Brzdek, On solutions of the d'Alembert equation on a restricted domain, Aequationes Math. 85 (2013), no. 1-2, 169-183.   DOI
5 N. G. De Brujin, On almost additive functions, Colloq. Math. 15 (1966), 59-63.   DOI
6 J. Chung, A distributional version of functional equations and their stabilities, Nonlinear Anal. 62 (2005), no. 6, 1037-1051.   DOI
7 J. Chung, Stability of exponential equations in Schwarz distributions, Nonlinear Anal. 69 (2008), no. 10, 3503-3511.   DOI
8 J. Chung and P. K. Sahoo, Solution of several functional equations on nonunital semigroups using Wilson's functional equations with involution, Abstr. Appl. Anal. 2014 (2014), Art. ID 463918, 9 pp.
9 J. Chung and P. K. Sahoo, Stability of Wilson's functional equations with involutions, Aequationes Math. 89 (2015), no. 3, 749-763.   DOI
10 J. K. Chung, B. R. Ebanks, C. T. Ng, and P. K. Sahoo, On a quadratic-trigonometric functional equation and some applications, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1131-1161.   DOI
11 I. Corovei, The cosine functional equation for nilpotent groups, Aequationes Math. 15 (1977), no. 1, 99-106.   DOI
12 I. Corovei, The functional equation f(xy) + f($xy^{-1}$) = 2f(x)g(y) for nilpotent groups, Mathematica (Cluj) 22(45) (1980), no. 1, 33-41.
13 I. Corovei, The d'Alembert functional equation on metabelian groups, Aequationes Math. 57 (1999), no. 2-3, 201-205.   DOI
14 I. Corovei, Wilson's functional equation on metabelian groups, Mathematica (Cluj) 44(67) (2002), no. 2, 137-146.
15 P. De Place Friis, D'Alembert's and Wilson's equations on Lie groups, Aequationes Math. 67 (2004), no. 1-2, 12-25.   DOI
16 J. d'Alembert, Addition au Memoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin (1750), 355-360.
17 J. d'Alembert, Memoire sur les principes de mecanique, Hist. Acad. Sci. Paris, pages 278-286, 1769.
18 P. Erdos, Problem P310, Colloq. Math. 7 (1960), 311.
19 I. Fenyo, Uber eine Losungsmethode gewisser Funktionalgleichungen, Acta Math. Acad. Sci. Hungar. 7 (1956), 383-396.   DOI
20 I. M. Gelfand and G. E. Shilov, Generalized Functions II, Academic Press, New York, 1968.
21 I. M. Gelfand and G. E. Shilov, Generalized Functions IV, Academic, Press, New York, 1968.
22 P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011.
23 L. Hormander, The analysis of linear partial differential operator I, Springer-Verlag, Berlin-New York, 1983.
24 W. B. Jurkat, On Cauchy's functional equation, Proc. Amer. Math. Soc. 16 (1965), 683-686.
25 S. Kaczmarz, Sur l'equation fonctionnelle f(x)+f(x+y) = $\phi$(y)f(x+y/2), Fund. Math. 6 (1924), 122-129.   DOI
26 L. Schwartz, Theorie des Distributions, Hermann, Paris, 1966.
27 P. Sinopoulos, Functional equations on semigroups, Aequationes Math. 59 (2000), no. 3, 255-261.   DOI
28 H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), no. 1-2, 144-172.   DOI
29 G. van der Lyn, Sur l'equation fonctionnelle f(x + y) + f(x − y) = 2f(x)$\phi$(y), Mathematica (Cluj) 16 (1940), 91-96.
30 D. V. Widder, The Heat Equation, Academic Press, New York, 1975.
31 W. H. Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1920), no. 7, 300-312.   DOI
32 W. H. Wilson, Two general functional equations, Bull. Amer. Math. Soc. 31 (1925), no. 7, 330-333.   DOI