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PETTIS INTEGRABILITY
DonNG IL RIM AND JIN YEE KIM

ABSTRACT. Let (€2, L, 1) be a finite perfecl measure space, and let
f 1 Q@ — X be strongly measurable. f is Pettis integrable if and only

il there is a sequence (f,,) of Pettis integrable functions from £ into
X suclh: that

(a) thereis a positive increasing function ¢ defined on [0, 00} such that

liny— oo ﬂ‘ﬂ = oo and sup [, ¢(|2* fa]) du < oo for each z* €
Bxe,n€ N, and

{b) for each z* € X*, limg o * fo = 2* fa.c..

1. Preliminaries

Let (2,5, 2) be a finite measure space and let X be a Banach
space. The dual of a Banach space X will be denoted by X* and its
closed unit ball will be denoted by By..

A function f from Q into X is weakly measurable if the scalar
function z* f is measurable for each z* in the dual space X*.

A function f from Q into X is said to be Pettis integrable if
(a) z*f is measurable for all z* € X*,

(b) a*f € L'(y) for all «* € X*, and
~(¢) for each E € T there exists an element [ fdp € X such that

< [ fdu, z* >= fpz*fdp for allz® € X~

A funetion f: 8 — X is said to be (storongly)measurable if there

exists a sequence ( fn )Jnen of p-simple functions which converges pi-a.e.

to f.
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A finite measure space (2, %, u) is perfect if for each measurable
¥ : @ — R and for each set E C R such that ¢y71(EF) € &, there is a
Borel set B C E such that plp~1(B)] = p[v " (£))].

The class of perfect measure space is very broad. In particular, all
Radon measure spaces are perfect.

We shall denote by P(u, X') the space of(class of ) Pettis integrable
functions f : & — X, endowed with its natural norm given by the

formula

_ W = sup{jg; |z* fldp : 2* € By }.

Note that || f, fdul| <||f]| for f € P(p, X) and 4 € Z.

2. Pettis Integrability

We are going to need some fact about Pettis integrability. The

following proposition can be found in [3] and [6].

PROPOSITION 1[G, Theorem 2.10]. Let (§2,%, ) be a finite perfect
measure space and let f : §2 — X. If there is a sequence (f,) of Pettis
integrable functions from @ into X such that

(a) the set {a*f, : 2* € Bx.,n = 1,2,...} is uniformly integrable,
and |
(b) for each z* € X*, lim,—ooz*fn = 2* fa.e., then f is Petiis inte- .

grable and lim,, .o S fudp={ & fdpe weakly for each E € T

ProoF. If a function f: @ — X is the almost everywhere weak
pointwise limit of a sequence (fy,) of Pettis integrable functions in the
sense that for each z* € X*, 2*f = lim,_ o 2* fra.e., then f is de-
termined by a WCG subspace of X, and since {z*f,, : * € Bx«,n =
1,2,...} is uniformly integrable, f is Dunford integrable with count-
ably additive indefinite integral. Therefore f is Pettis integrable.
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COROLLARY 2[6, Corollary 2.11]. Let f : @ — X be Dunford
integrable, and assume X has no copy of Cy. The following statements
are equivalent:

" (a) f is Pettis integrable.
{b) There exists a sequence (f») of Pettis integrable functions from

into X such that for each z* € X*, limp—oo z* fr = z* fa.e..

PROPOSITION 3. If(fy) is a sequence of Pettis integrable functions
converging weakly in measure to f, and if limp .o [, f, p fu dp exists for
every &/ € X, then f is Pettis integrable and z g = lim,, _, oo fE’ fn dp =
Jp fdp.

PROOF. Since z*f, converges to 2*f in measure and since also
2¥rr = Imp—oo :L*(]E fadp) =lim, jL z* fn dpt, from real-function
theory it follows that a* f is integrable and that

2*(zp) = lim ];w*f,.Ldysﬁ'x*fdgt

w—o0

for all 2* € X* and any E € Z. Thus f is Pettis integrable and
Jpfdu=2g=lm, o S Fndp.

THEOREM 4. Let (2. X, 1) be a finite perfect measure space and
let f : Q — X. If there is a sequence ( f,,} of Pettis integrable functions
from §Q into X such that

(a) z*f € LY, and
(b) for each z* € Bx+, limy oo 2* fr = 2* f in L'-norm,

then f is Pettis integrable and lim,,_ o fE fody = fEfdp Weakly

for each F € X.

PROOF. If for each 2* in X* lim,, oo * f,, = 2* f in L'-norm, then

hm, e 2*fr = 2*f in measure, f E € &,

/ |&* ful dpe < / le* fldp + {lz* fo — 2" f]l1  for alln > 1,
E E
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so sup, fq [2* fa|du < co in particular. Given ¢ > 0, take ng such
that |z* fa — 2* flji < § for n > ng. Now consider the finite sequence
F={z*f1,2*foy... ,2* fno,@* f}. This is uniformly integrable. Hence
there is a § > 0 such that {i |g|du < § whenever g € F and p(E) < é.
So [pla*faldp < eforalln 2 1if u(E) < & Hence {z*f, : 2* €
Bx«,n € N} is uniformly integrable. Therefore by a theorem of
Geitz[3, Theorem 3], f is Pettis integrable and limp oo Jpfndp =
f f ds weakly for each E € I.

Using the above Theorem with {3, Theorem 3] we offer the follow-

ing:

COROLLARY 5. Let (2, £, u) be a finite perfect measure space, and
let f:+Q — X. Then f is Pettis integrable if and only if there is a
sequence ( f,) of simple functions from Q into X such that
(a) the set {z*f, : * € Bx.,n € N} is bounded by some element in
L'(y), and

(b) for each &* in X* limp—oo 2* fn = 3" fa.e..

In the following theorem, we replace the condition (a) of [3. The-
orem 6] by the existence of some scalar function which guarantee the

uniform integrability of the condition.

~ THEOREM 6. Let (Q2,X, ) be a finitc perfect measure space, and

let f: Q0 — X be strongly measurable, f is Pettis intcgrable if and

only if there is a sequence (fa) of Pettis integrable functions fromn Q

into X such that

a) there is a positive increasing function ¢ defined on [0, 00) such that

& .

HMy—oo ‘b—(:l = o0 and sup{ fo #(|2*ful)dp : 2" € Bx-,n € N} <
00, and '

(b) for each z* € X*,limp—co 2" fn = z* fa.e

Proo¥. (<=). Let M = sup [, ¢(|z* fx]) dp and suppose ¢ > 0
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is given. Put a = % and then choose t; such that @ > afort > .
Hence on the set {|z* f,| > {0} we have

. ¢(|2* fal)
Il fal £ 4

So

1 .
/ fldu< X f Bl £a) du
{lz*fal>ta} G J{)z* ful>t0)
M
a
=¢

<

for all z* € Bx.,n € N. We can find ¢, for any given ¢ > 0. Hence
by definition of uniformly. integrable, {z*f, : * € Bx.,n € N} is
uniformly integrable. Then by a theorem of Geitz[3, Theorem 6], f is
Pettis integrable.

{(==). Suppose f is Pettis integrable. By a theorem of Pettis[l,

Theorem 8], lim / |z f|dpt = 0 uniformly for z* € Bx.. Also
w(E)y—0 /g

sup [|z* fal{r1 < co. An appeal to Lavallee Poussin’s Theorem([5], es-
x’.!fn .
tablishes the existence of a positive increasing function ¢ defined on

[0, 00) such that lim,_, @ = oo such that

sup [ $(aful)du < oo
T fa I
and by a theorem of Geitz[3, Theorem 6], for each z* € X *,

lim, 0 2*fn = 2 fa.e..

THEOREM 7. Let (2, %, 1) be a finite measure space, f,(fn)nen C
P(p, X) Pettis integrable function Q — X, and f is bounded. Then
‘the sequence (fn)nen converges weakly to f with respect to the
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Pettis topology on P{u,X) if and only if ([, )uen is bounded and
(fE z* fo dp)nen converges to [pz* fdy for all E € ¥ and z* € Bx-.

PROOF. (==). Since the sequence (f,)ren converges weakly to
f to Pettis’s norm topology, then

fe = £l = supd | Jo"(fn = £)lduss* € Bx-} =0
Q
as n — oo and so

]]/E(fn—f)du”—)(] asn — oo

since f,(fa),mn € N are Pettis intcgrable. Hence (fr 2* fodu)nen
converges to fE:r*f for all £ € ¥ and 2* € Bx., and since f 1s
bound, {fn)nen is bounded.

(<=). It’s clear.
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