
JOURNAL OF THE 
CHUNGCHEONG MATHEMATICAL SOCIETY 
Volume 8, June 1995

PETTIS INTEGRABILITY

Dong II Rim and Jin Yee Kim

ABSTRACT. Let (Q, S, /i) be a finite perfect measure space, and let 
/ : Q —> X be strongly measurable, f is Pettis integrable if and only 
if there is a sequence (/n) of Pettis integrable functions from Q into 
X such that

(a) there is a positive increasing function <f> defined on [0, oo) such that 
lim—8 으平 = 8 and sup fn |) d^i < oo for each x* G 
Bx*£ N〉and

(b) for each x* C X*, limn~>oo = a?*/a.e..

1. Preliminaries
Let (Q, S,;/) be a finite measure space and let X be a Banach 

space. The dual of a. Banach space X will be denoted by X* and its 
closed unit ball will be denoted by Bx* .

A function f from Q into X is weakly measurable if the scalar 
function is measurable for each ⑦* in the dual space X*。

A function / from Q into X is said to be Pettis integrable if
(a) x*f is measurable for all z* € X*,
(b) x^f G 乙 1(#) for all G X*, and
(c) for each E £ U there exists an element fE f dfi £ X such that

< 比 f dj奶工* > = j% 站 f d卩 for alh* G X*.

A function / : Q X is said to be (storongly)measurable if there 
exists a sequence (fn)neN of /^-simple functions which converges ^-a.e. 
to /.
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A finite measure space (Q, E,卩)is perfect if for each measurable 
p : Q, R and for each set E C R such that qL(E) € S, there is a 
Borel set B G E such that 广"(E)].

The class of perfect measure space is very broad. In particular, all 
Radon measure spaces are perfect.

We shall denote by P(/i,X) the space of (class of) Pettis integrable 
functions / : Q X, endowed with its natural norm given by the 
formula

ll/ll = sup{ [ 山：⑦* e 8x*}.

Note that || fAfd/j>^ < ||/|| for f € 1기j'X) and A e S.

2. Pettis Integrability
We are going to need some fact about Pettis integrability. The 

following proposition can be found in [3] and [6].

PROPOSITION 1[6, Theorem 2.10]. Let (Q, E,卩)be a Unite perfect 
measure space and let / : Q —> X・ If there is a sequence (/n) of Pettis 
integrable functions from Q into X such that

(a) the set {x^fn : G Bx*)n = 1,2,...} is uniformly integrable, 
and

(b) for each z* G X*, limn_^oo^*/n = x*fa,.e., then f is Pettis inte­
grable and linin-^oo f fn 如=fE f 如 weakly for each £? G S.

PROOF. If a function / : Q —)X is the almost everywhere weak 
pointwise limit of a sequence (/n) of Pettis integrable functions in the 
sense that for each x* G X*, = linin-^ooa;*/na.e., then f is de­
termined by a WCG subspace of X, and since {x^fn : x* G Bx*,n = 
1,2,... } is uniformly integrable, f is Dunford integrable with count­
ably additive indefinite integral. Therefore f is Pettis integrable.
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Corollary 2[6, Corollary 2.11]. Let f : Q — X be Dunford 
integrable, and assume X has no copy of Co. The following statements 
are equivalent:

(a) f is Pettis integrable.
(b) There exists a sequence (/n) of Pettis integrable functions from Q 

into X such that for each z* € X*, 1位侦—8 ^*fn = T*fae.

PROPOSITION 3. If (/n) is a sequence of Pettis integrable functions 
converging weakly in m魚su흐。to /, and if JE fn d卩 exists for 
every E £ & then f is Pettis integrable a,nd xe = =
Je f d卩，.

Proof. Since x^fn converges to x*f in measure and since also
⑦工E = lim^—>8 (Je fn 由丄、)=linin—J"工* fn d]丄〉from real-function 
theory it follows that x*f is integrable and that

⑦*(逃)=lim / x^fn dji — / x^ f du 
nf。J 日 JE

for all z* € X* and any £/ G S. Thus f is Pettis integrable and 
Je f dp = HE = lillln—>oo Je fn d*k

THEOREM 4. Let (Q, E, p) be a finite perfect measure space and 
let f : Q —> X. If there is a sequence (fn) of Pettis integrable functions 
from Q into X such that

(a) x*f e L , and1
(b) for each ⑦* G Bx*, lim,—8 fn = a产 f in ^-norm,

I dfL / |^*/| d/i + \\x*fn — for alln > 1, 
E JE

then f is Pettis integrable and lim—8 fE fn d/i = fEf 叩 weakly 
flu each E G E.

Proof. If for each k in X* fn = x*f in L^norm, then
limn-^oo x*fn = x* f in measure. If E C ；
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SO sup” Jq \x^fn\dfi < oo in particular. Given 6 > 0, take n0 such 
that ||o:*/n 一 < f forn > n0. Now consider the finite sequence 
：F =扬*力双* 凡・.・,a:*/n0 This is uniformly integrable. Hence 
there is a 6 > 0 such that fE \g\d^ < | whenever g £ and 卩(E) < & 
So fE \x^fn\d)JL < e for all n > 1 if 卩(E) < 8. Hence {x*fn : z* 6 
Bxr n £ N} is uniformly integrable. Therefore by a theorem of 
Geitz[3, Theorem 3], f is Pettis integrable and limn_^oo fE fn = 
脱 f d卩，weakly for each E C

Using the above Theorem with [3, Theorem 3] we offer the follow­

ing:

Corollary 5. Let (Q, E,卩)be a finite perfect measure space, and 
虹 f ： Q t X. Then f is Pettis integrable if and only if there is a 
sequence (fn) of simple functions from Q into X such that

(a) the set {x*fn :⑦* € 敬" € N} is bounded by some element in 
乙 1(0), and

(b) for csich x* in -A. * lim”,―= £ f a.e..

In 난le following theorem, we replace the condition (a) of [3. The­
orem 6] by the existence of some scalar function which guarantee the 
uniform integrability of the condition.

THEOREM 6. Let be a finite perfect measure space, and
kt f ： Q t X be strongly measiuable, f is Pettis integrable if and 
only if there is a sequence (/n) of Pettis integrable functions from Q 
into X such that

(a) there is a positive inc흐easing function ' defined on [0, oo) such that
lim—* 쏙平 = +oo and 沖房 ©(|虹扁) 为 : € Bx" E N} <
oo, and

(b) for each x* G X*,limn-^oo ^*/n = x*fa.e.

Proof. (<=)• Let M = sup烏卽 and suppose 8 > 0 
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is given. Put a = 쓰 and then choose tQ such that > a for t > tQ. 
Hence on the set {\x*fn\ > i0} we have

k*/n| < "이).
a

So

/ 1/1 dp, <^-[ <机|站/”|)叩

시河} aJ{\^fn\>t0}
<M

a
=e

for all z* 6 Bx*, n g Ar. We can find to for any given e > 0. Hence 
by definition of uniformly, integrable, {x*fn : x* e Bx" £ N} is 
uniformly integrable. Then by a theorem of Geitz[3, Theorem 6], f is 
Pettis integrable.

(=> )・ Suppose f is Pettis integrable. By a theorem of Pettisfl, 

Theorem 8], lim / \x*f\(/// = 0 uniformly for z* £ Bx* ・ Also 
n(E)t)Je

sup \\^*fn\\Ll< 8. An appeal to Lavallee Poussin's Theorem[5], es- 
Jn

tablishes the existence of a positive increasing function(f> defined on 
[0, oo) such that lim一8 어牛 = oo such that

sup / ©(/*£』)叩 <8

and by a theorem of Geitz[3, Theorem 6], for each rr* e X*, 
lim??—>8 .

THEOREM 7. Let (12, S,/^) be a finite measure space, /, (/n)neN C 
刀(r,X) Pettis integrable function Q t X, and f is bounded. Then 
the sequence (/n)neN conve흐ges weakly to f with respect to the
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Pettis topology on 7가if and only if is bounded and
(J、E x*fn d卩)gN converges to fE x^fd^ for all E £ and x* £ Bx* ・

PROOF. ( => ). Since the sequence (品)n£N converges weakly to 
f to Pettis's norm topology, then

Wfn 一 /II 二二 sup{，Z k*(/n 一 /)|^ : Z* EBx*} — 0

as n — cq and so

II / (/n - /) d/j.\\ — 0 asn —) oo 
Je

since /, (/n), G N are Pettis integrable. Hence d卩

converges to fE ^*f for all E G E and z* C Bx*)and since f is 
bound, (/n)nGN is bounded.

(<=).Ifs clear.
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