PETTIS INTEGRABILITY

Dong Il Rim and Jin Yee Kim

ABSTRACT. Let (Ω, Σ, μ) be a finite perfect measure space, and let $f: \Omega \to X$ be strongly measurable. f is Pettis integrable if and only if there is a sequence (f_n) of Pettis integrable functions from Ω into X such that

- (a) there is a positive increasing function ϕ defined on $[0,\infty)$ such that $\lim_{t\to\infty}\frac{\phi(t)}{t}=\infty$ and $\sup \int_{\Omega}\phi(|x^*f_n|)\,d\mu<\infty$ for each $x^*\in B_{X^*}, n\in N$, and
- (b) for each $x^* \in X^*$, $\lim_{n \to \infty} x^* f_n = x^* f_{a.e.}$

1. Preliminaries

Let (Ω, Σ, μ) be a finite measure space and let X be a Banach space. The dual of a Banach space X will be denoted by X^* and its closed unit ball will be denoted by B_{X^*} .

A function f from Ω into X is weakly measurable if the scalar function x^*f is measurable for each x^* in the dual space X^* .

A function f from Ω into X is said to be Pettis integrable if

- (a) x^*f is measurable for all $x^* \in X^*$,
- (b) $x^*f \in L^1(\mu)$ for all $x^* \in X^*$, and
- (c) for each $E \in \Sigma$ there exists an element $\int_E f d\mu \in X$ such that

$$<\int_E f d\mu, x^*> = \int_E x^* f d\mu$$
 for all $x^* \in X^*$.

A function $f: \Omega \to X$ is said to be (storongly) measurable if there exists a sequence $(f_n)_{n \in N}$ of μ -simple functions which converges μ -a.e. to f.

Received by the editors on June 30, 1995. 1991 Mathematics subject classifications: Primary 28B20.

A finite measure space (Ω, Σ, μ) is perfect if for each measurable $\psi : \Omega \to R$ and for each set $E \subset R$ such that $\psi^{-1}(E) \in \Sigma$, there is a Borel set $B \subset E$ such that $\mu[\psi^{-1}(B)] = \mu[\psi^{-1}(E)]$.

The class of perfect measure space is very broad. In particular, all Radon measure spaces are perfect.

We shall denote by $\mathcal{P}(\mu, X)$ the space of class of Pettis integrable functions $f: \Omega \to X$, endowed with its natural norm given by the formula

$$||f|| = \sup\{\int_{\Omega} |x^*f| \, d\mu : x^* \in B_{X^*}\}.$$

Note that $\|\int_A f d\mu\| \le \|f\|$ for $f \in \mathcal{P}(\mu, X)$ and $A \in \Sigma$.

2. Pettis Integrability

We are going to need some fact about Pettis integrability. The following proposition can be found in [3] and [6].

PROPOSITION 1[6, Theorem 2.10]. Let (Ω, Σ, μ) be a finite perfect measure space and let $f: \Omega \to X$. If there is a sequence (f_n) of Pettis integrable functions from Ω into X such that

- (a) the set $\{x^*f_n: x^* \in B_{X^*}, n = 1, 2, ...\}$ is uniformly integrable, and
- (b) for each $x^* \in X^*$, $\lim_{n \to \infty} x^* f_n = x^* f$ a.e., then f is Pettis integrable and $\lim_{n \to \infty} \int f_n d\mu = \int_E f d\mu$ weakly for each $E \in \Sigma$.

PROOF. If a function $f: \Omega \to X$ is the almost everywhere weak pointwise limit of a sequence (f_n) of Pettis integrable functions in the sense that for each $x^* \in X^*$, $x^*f = \lim_{n \to \infty} x^*f_n$ a.e., then f is determined by a WCG subspace of X, and since $\{x^*f_n : x^* \in B_{X^*}, n = 1, 2, \ldots\}$ is uniformly integrable, f is Dunford integrable with countably additive indefinite integral. Therefore f is Pettis integrable.

COROLLARY 2[6, Corollary 2.11]. Let $f: \Omega \to X$ be Dunford integrable, and assume X has no copy of C_0 . The following statements are equivalent:

- (a) f is Pettis integrable.
 - (b) There exists a sequence (f_n) of Pettis integrable functions from Ω into X such that for each $x^* \in X^*$, $\lim_{n \to \infty} x^* f_n = x^* f_{\mathbf{a}.\mathbf{e}.}$.

PROPOSITION 3. If (f_n) is a sequence of Pettis integrable functions converging weakly in measure to f, and if $\lim_{n\to\infty} \int_E f_n d\mu$ exists for every $E \in \Sigma$, then f is Pettis integrable and $x_E \equiv \lim_{n\to\infty} \int_E f_n d\mu = \int_E f d\mu$.

PROOF. Since x^*f_n converges to x^*f in measure and since also $x^*x_E = \lim_{n\to\infty} x^*(\int_E f_n d\mu) = \lim_{n\to\infty} \int_E x^*f_n d\mu$, from real-function theory it follows that x^*f is integrable and that

$$x^*(x_E) = \lim_{n \to \infty} \int_E x^* f_n \, d\mu = \int_E x^* f \, d\mu$$

for all $x^* \in X^*$ and any $E \in \Sigma$. Thus f is Pettis integrable and $\int_E f d\mu = x_E = \lim_{n \to \infty} \int_E f_n d\mu$.

THEOREM 4. Let (Ω, Σ, μ) be a finite perfect measure space and let $f: \Omega \to X$. If there is a sequence (f_n) of Pettis integrable functions from Ω into X such that

- (a) $x^*f \in L^1$, and
- (b) for each $x^* \in B_{X^*}$, $\lim_{n \to \infty} x^* f_n = x^* f$ in L^1 -norm, then f is Pettis integrable and $\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu$ weakly for each $E \in \Sigma$.

PROOF. If for each x^* in X^* $\lim_{n\to\infty} x^*f_n = x^*f$ in L^1 -norm, then $\lim_{n\to\infty} x^*f_n = x^*f$ in measure. If $E \in \Sigma$,

$$\int_{E} |x^* f_n| \, d\mu \le \int_{E} |x^* f| \, d\mu + ||x^* f_n - x^* f||_1 \quad \text{for all } n \ge 1,$$

so $\sup_{n} \int_{\Omega} |x^*f_n| d\mu < \infty$ in particular. Given $\varepsilon > 0$, take n_0 such that $||x^*f_n - x^*f||_1 < \frac{\varepsilon}{2}$ for $n \ge n_0$. Now consider the finite sequence $\mathcal{F} = \{x^*f_1, x^*f_2, \dots, x^*f_{n_0}, x^*f\}$. This is uniformly integrable. Hence there is a $\delta > 0$ such that $\int_{E} |g| d\mu < \frac{\varepsilon}{2}$ whenever $g \in \mathcal{F}$ and $\mu(E) < \delta$. So $\int_{E} |x^*f_n| d\mu < \varepsilon$ for all $n \ge 1$ if $\mu(E) < \delta$. Hence $\{x^*f_n : x^* \in B_{X^*}, n \in N\}$ is uniformly integrable. Therefore by a theorem of Geitz[3, Theorem 3], f is Pettis integrable and $\lim_{n \to \infty} \int_{E} f_n d\mu = \int_{E} f d\mu$ weakly for each $E \in \Sigma$.

Using the above Theorem with [3, Theorem 3] we offer the following:

COROLLARY 5. Let (Ω, Σ, μ) be a finite perfect measure space, and let $f: \Omega \to X$. Then f is Pettis integrable if and only if there is a sequence (f_n) of simple functions from Ω into X such that

- (a) the set $\{x^*f_n : x^* \in B_{X^*}, n \in N\}$ is bounded by some element in $L^1(\mu)$, and
- (b) for each x^* in X^* $\lim_{n\to\infty} x^* f_n = x^* f$ a.e..

In the following theorem, we replace the condition (a) of [3. Theorem 6] by the existence of some scalar function which guarantee the uniform integrability of the condition.

THEOREM 6. Let (Ω, Σ, μ) be a finite perfect measure space, and let $f: \Omega \to X$ be strongly measurable, f is Pettis integrable if and only if there is a sequence (f_n) of Pettis integrable functions from Ω into X such that

- (a) there is a positive increasing function ϕ defined on $[0, \infty)$ such that $\lim_{t\to\infty} \frac{\phi(t)}{t} = +\infty$ and $\sup\{\int_{\Omega} \phi(|x^*f_n|) d\mu : x^* \in B_{X^*}, n \in N\} < \infty$, and
- (b) for each $x^* \in X^*$, $\lim_{n \to \infty} x^* f_n = x^* f$ a.e.

PROOF. (\iff). Let $M = \sup \int_{\Omega} \phi(|x^*f_n|) d\mu$ and suppose $\varepsilon > 0$

is given. Put $a = \frac{M}{\epsilon}$ and then choose t_0 such that $\frac{\phi(t)}{t} \ge a$ for $t > t_0$. Hence on the set $\{|x^*f_n| \ge t_0\}$ we have

$$|x^*f_n| \le \frac{\phi(|x^*f_n|)}{a}.$$

So

$$\int_{\{|x^*f_n| \ge t_0\}} |f| \, d\mu \le \frac{1}{a} \int_{\{|x^*f_n| \ge t_0\}} \phi(|x^*f_n|) \, d\mu$$

$$\le \frac{M}{a}$$

$$= \varepsilon$$

for all $x^* \in B_{X^*}$, $n \in N$. We can find t_0 for any given $\varepsilon > 0$. Hence by definition of uniformly integrable, $\{x^*f_n : x^* \in B_{X^*}, n \in N\}$ is uniformly integrable. Then by a theorem of Geitz[3, Theorem 6], f is Pettis integrable.

(\Longrightarrow). Suppose f is Pettis integrable. By a theorem of Pettis[1, Theorem 8], $\lim_{\mu(E)\to 0}\int_E |x^*f|\,d\mu=0$ uniformly for $x^*\in B_{X^*}$. Also $\sup_{x^*,f_n}\|x^*f_n\|_{L^1}<\infty$. An appeal to Lavallee Poussin's Theorem[5], establishes the existence of a positive increasing function ϕ defined on $[0,\infty)$ such that $\lim_{t\to\infty}\frac{\phi(t)}{t}=\infty$ such that

$$\sup_{x^*, f_n} \int_{\Omega} \phi(|x^*f_n|) \, d\mu < \infty$$

and by a theorem of Geitz[3, Theorem 6], for each $x^* \in X^*$, $\lim_{n\to\infty} x^* f_n = x^* f$ a.e..

THEOREM 7. Let (Ω, Σ, μ) be a finite measure space, $f, (f_n)_{n \in \mathbb{N}} \subset \mathcal{P}(\mu, X)$ Pettis integrable function $\Omega \to X$, and f is bounded. Then the sequence $(f_n)_{n \in \mathbb{N}}$ converges weakly to f with respect to the

Pettis topology on $\mathcal{P}(\mu, X)$ if and only if $(f_n)_{n \in \mathbb{N}}$ is bounded and $(\int_E x^* f_n d\mu)_{n \in \mathbb{N}}$ converges to $\int_E x^* f d\mu$ for all $E \in \Sigma$ and $x^* \in B_{X^*}$.

PROOF. (\Longrightarrow). Since the sequence $(f_n)_{n\in\mathbb{N}}$ converges weakly to f to Pettis's norm topology, then

$$||f_n - f|| = \sup\{\int_{\Omega} |x^*(f_n - f)| d\mu : x^* \in B_{X^*}\} \to 0$$

as $n \to \infty$ and so

$$\|\int_E (f_n - f) \, d\mu\| \to 0 \quad \text{as} n \to \infty$$

since $f, (f_n), n \in N$ are Pettis integrable. Hence $(\int_E x^* f_n d\mu)_{n \in N}$ converges to $\int_E x^* f$ for all $E \in \Sigma$ and $x^* \in B_{X^*}$, and since f is bound, $(f_n)_{n \in N}$ is bounded.

 (\Leftarrow) . It's clear.

REFERENCES

- J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, no.15, Amer. Math. Soc., 1977.
- L. Drewnowski, M. Floreneio, and P. J. Paul, The space of Pettis Integrable Functions is Barrelled., Proc. Amer. Math. Soc. 114 (1992), No.3, 687-694.
- 3. R. F. Geitz, Pettis integration, Pro. Amer. Math. Soc. 82 (1981), 81-86.
- 4. R. E. Huff, Some remarks on the Pettis integral, Pro. Amer. Math. Soc. 96 (1986), 402-404.
- 5. P. A. Meyer, Probability and potentials, Blaisdell, Waltham, Mass. (1975).
- G. F. Stefansson, Pettis Integrability, Tran. Amer. Math. Soc. 330 (1992), No.1, 401-418.
- M. Talagrand, Pettis integral and measure theory, reprint 1986, Mem. Amer. Math. Soc. (1984), No.307.

DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY CHEONGJU 360-763, KOREA