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DISTRIBUTIONAL SOLUTIONS OF WILSON’S

FUNCTIONAL EQUATIONS WITH INVOLUTION AND

THEIR ERDÖS’ PROBLEM

Jaeyoung Chung

Abstract. We find the distributional solutions of the Wilson’s functional
equations

u ◦ T + u ◦ Tσ
− 2u⊗ v = 0,

u ◦ T + u ◦ Tσ
− 2v ⊗ u = 0,

where u, v ∈ D′(Rn), the space of Schwartz distributions, T (x, y) = x +
y, Tσ(x, y) = x+ σy, x, y ∈ Rn, σ an involution, and ◦, ⊗ are pullback
and tensor product of distributions, respectively. As a consequence, we
solve the Erdös’ problem for the Wilson’s functional equations in the class
of locally integrable functions. We also consider the Ulam-Hyers stability
of the classical Wilson’s functional equations

f(x+ y) + f(x+ σy) = 2f(x)g(y),

f(x+ y) + f(x+ σy) = 2g(x)f(y)

in the class of Lebesgue measurable functions.

1. Introduction

Throughout this paper we denote by G a commutative group, Rn the n-
dimensional Euclidean space, C the set of complex numbers, and f, g : G → C

or f, g : R
n → C. A function σ : G → G is said to be an involution if

σ(x + y) = σ(x) + σ(y) for all x, y ∈ G and σ(σ(x)) = x for all x ∈ G. For
simplicity we write σx instead of σ(x).

The functional equation

(1.1) f(x+ y) + f(x− y) = 2f(x)f(y), ∀x, y ∈ G
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is known as the d’Alembert’s functional equation [16, 17]. As the name suggests
this functional equation was introduced by d’Alembert in connection with the
composition of forces and plays a central role in determining the sum of two
vectors in Euclidean and non-Euclidean geometries [25]. Wilson’s functional
equations

f(x+ y) + f(x+ σy) = 2f(x)g(y), ∀x, y ∈ G,(1.2)

f(x+ y) + f(x+ σy) = 2g(x)f(y), ∀x, y ∈ G(1.3)

are generalizations of d’Alembert’s functional equation. Among others Wilson’s
functional equation was studied by Wilson [31, 32], Kaczmarz [24], van der Lyn
[29], Fenyö [19], Angheluta [3], Aczél Chung, and Ng [2], Chung, Ebanks, Ng
and Sahoo [10], Aczél [1] and Stetkær in [28]. Recently, Chung and Sahoo [8]
solve the equation (1.2) and (1.3) for arbitrary commutative semigroup.

In 1950, Laurent Schwartz introduced the theory of distributions in his
monograph Théorie des distributions [26]. In this book Schwartz systematizes
the theory of generalized functions, basing it on the theory of linear topological
spaces, relates all the earlier approaches, and obtains many important results.
After his elegant theory appeared, many important concepts and results on the
classical spaces of functions have been generalized to the space of distributions.
In this paper, as distributional version of the equations (1.2) and (1.3) we first
consider the equations

u ◦ T + u ◦ T σ − 2u⊗ v = 0,(1.4)

u ◦ T + u ◦ T σ − 2v ⊗ u = 0,(1.5)

where u ∈ D′(Rn), the space of Schwartz distribution, T (x, y) = x + y,
T σ(x, y) = x + σy, x, y ∈ R

n, and ◦, ⊗ are pullback and tensor product of
distributions, respectively. As consequences of the results in distributions, we
obtain the Erdös’ problem (see [5, 18, 23]) for Wilson’s functional equation,
namely, we solve the equations

f(x+ y) + f(x+ σy)− 2f(x)g(y) = 0,(1.6)

f(x+ y) + f(x+ σy)− 2g(x)f(y) = 0(1.7)

for all (x, y) ∈ (Rn × R
n) \ Ω, where Ω is a subset of R2n with 2n-dimensional

Lebesgue measure zero and f, g are locally integrable functions.
Secondly, we consider the Ulam-Hyers stability of the Wilson’s functional

equations (1.6) and (1.7) in the class of Lebesgue measurable functions with
exponential perturbation, i.e., we consider the functional inequalities

|f(x+ y) + f(x+ σy)− 2f(x)g(y)| ≤ eγ·y,(1.8)

|f(x+ y) + f(x+ σy)− 2g(x)f(y)| ≤ eγ·y,(1.9)

where f, g : Rn → C are Lebesgue measurable functions and γ ∈ R
n. For more

known results for d’Alembert’s functional equation and Wilson’s functional
equations we refer the reader to [4, 6, 7, 11, 12, 13, 14, 15, 25].
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2. Solutions of Eq. (1.4), (1.5), (1.6) and (1.7)

A function m : G → C is called an exponential function provided that
m(x + y) = m(x)m(y) for all x, y ∈ G and a : G → C is called an additive

function provided that a(x+ y) = a(x) + a(y) for all x, y ∈ G. Now, we briefly
introduce the space D′(Rn) of distributions. We denote by α = (α1, . . . , αn) ∈
N

n
0 , where N0 is the set of non-negative integers, and |α| = α1 + · · · + αn,

∂α = ∂α1

1 · · · ∂αn
n , ∂j =

∂
∂xj

, j = 1, 2, . . . , n.

Definition 2.1. Let C∞

c (Rn) the set of all infinitely differentiable functions on
R

n with compact supports. A distribution u is a linear form on C∞

c (Rn) such
that for every compact set K ⊂ R

n there exist constants C > 0 and k ∈ N0 for
which

|〈u, ϕ〉| ≤ C
∑

|α|≤k

sup |∂αϕ|

holds for all ϕ ∈ C∞

c (Rn) with supports contained in K. The set of all distri-
butions on R

n is denoted by D′(Rn).

Definition 2.2. Let u ∈ D′(Rn2) and λ : Rn1 → R
n2 with n1 ≥ n2 a smooth

function such that for each x ∈ R
n1 the derivative λ′(x) is surjective, that

is, the Jacobian matrix ∇λ of λ has rank n2. Then there exists a unique
continuous linear map λ∗ : D′(Rn2) → D′(Rn1) such that λ∗u = u◦λ when u is
a continuous function. We call λ∗u the pullback of u by λ and usually denoted
by u ◦ λ.

We refer to ([22], chapter VI) for pullbacks of distributions. As a matter
of fact, the pullbacks u ◦ T and u ◦ T σ in the following (2.1) and (2.2) can be
written in a transparent way:

〈u ◦ T, ϕ(x, y)〉 = 〈ux,

∫

ϕ(x− y, y)dy〉,

〈u ◦ T σ, ϕ(x, y)〉 = 〈ux,

∫

ϕ(x− σy, y)dy〉

for all ϕ ∈ C∞

c (R2n).

Definition 2.3. Let uj ∈ D′(Rnj ) for j = 1, 2. Then the tensor product u1⊗u2

of u1 and u2, defined by

〈u1 ⊗ u2, ϕ(x1, x2)〉 = 〈u1 , 〈u2 , ϕ(x1, x2)〉 〉

for ϕ(x1, x2) ∈ C∞

c (Rn1 × R
n2), belongs to D′(Rn1 × R

n2).

Let u ∈ D′(Rn), φ ∈ C∞

c (Rn). Then the convolution u ∗ φ of u and φ is
defined by

(u ∗ φ)(x) = 〈uy, φ(x − y)〉.

It is well known that (u ∗ φ)(x) is a smooth function on R
n.

As main results in this section we first consider the functional equations

u ◦ T + u ◦ T σ − 2u⊗ v = 0,(2.1)
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u ◦ T + u ◦ T σ − 2v ⊗ u = 0,(2.2)

where u ∈ D′(Rn), σ is an involution on R
n and T, T σ : R2n → R

n are given
by

T (x, y) = x+ y, T σ(x, y) = x+ σy, x, y ∈ R
n.

As we see in Definition 2.2, pullback u ◦ T σ makes sense only when σ is a
smooth function. Since every smooth involution σ on R

n is given by a linear
transformation, we denotes σ an n×n matrix such that σ2 = I, where I is the
identity matrix.

For the proof of our main result we need the following two lemmas.

Lemma 2.4 ([8]). Let f, g : G → C satisfy the functional equation

f(x+ y) + f(x+ σy) = 2f(x)g(y)

for all x, y ∈ G. Then either (g, f) has the form

g(x) =
m(x) +m(σx)

2
, f(x) = α1 m(x) + α2 m(σx)

for all x ∈ G, where m : G → C is an exponential function satisfying m 6= m◦σ
and α1, α2 ∈ C, or (g, f) has the form

g(x) = m(x), f(x) = m(x)
(
β + a(x)

)

for all x ∈ G, where m : G → C is an exponential function satisfying m = m◦σ
and a : G → C is an additive function satisfying a = −a ◦ σ, and β ∈ C.

Lemma 2.5 ([8]). Let f, g : G → C satisfy

f(x+ y) + f(x+ σy) = 2 g(x) f(y)

for all x, y ∈ G. Then (g, f) has the form

f(x) =
m(x) +m(σx)

2λ
, g(x) =

m(x) +m(σx)

2

for all x ∈ G, where m : G → C is an exponential function satisfying m = m◦σ
and λ ∈ C with λ 6= 0.

As the first step of solving (2.1) we construct a σ-symmetric δ-sequence
δt, t > 0. Define ρ on R

n by

ρ(x) =

{
q e−(1−|x|2)−1

, if |x| < 1

0, if |x| ≥ 1,

where q =
(∫

|x|<1 e
−(1−|x|2)−1

dx
)
−1

. It is easy to see that ρ is an infinitely

differentiable function with support {x : |x| ≤ 1}. Now, we employ

δt(x) =
ρt(x) + ρt(σx)

2
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for all x ∈ R
n, where ρt(x) := t−nρ(x/t), t > 0. Let u ∈ D′(Rn). Then for

each t > 0,

(u ∗ δt)(x) = 〈uy, δt(x− y)〉 → u as t → 0+

in D′(Rn), i.e.,

lim
t→0+

∫

(u ∗ δt)(x)ϕ(x) dx = 〈u, ϕ〉, ∀ϕ ∈ C∞

c (Rn).

Furthermore, δt is σ-symmetric, i.e., δt = δt ◦ σ for all t > 0.
In the following, we exclude the case when u = 0 or v = 0. We denote by c ·x

the inner product of c = (c1, c2, . . . , cn) ∈ C
n and x = (x1, x2, . . . , xn) ∈ R

n

which defined as c · x =
∑n

j=1 cjxj .

Theorem 2.6. Let u, v ∈ D′(Rn) satisfy (2.1). Then either (v, u) is given by

v =
ec·x + ecσ·x

2
, u = α1e

c·x + α2e
cσ·x,(2.3)

where c ∈ C
n with c 6= cσ, α1, α2 ∈ C and cσ denotes matrix multiplication, or

else

v = e(c+cσ)·x, u = e(c+cσ)·x
(
β + (d− dσ) · x

)
(2.4)

for all x ∈ R
n, where β ∈ C, c, d ∈ C

n.

Proof. Convolving (δt ⊗ δs)(x, y) := δt(x)δs(y) in u ◦ T σ and using δt ◦ σ =
δt, (δt ∗ δs) ◦ σ = δt ∗ δs we have

[(u ◦ T σ) ∗ (δt ⊗ δs)](x, y) = 〈(u ◦ T σ)ξ,η, δt(x − ξ)δs(y − η)〉(2.5)

= 〈uz,

∫

Rn

δt(x− z + ση)δs(y − η) dη〉

= 〈uz,

∫

Rn

δt(σx − σz + η)δs(y − η) dη〉

= 〈uz,

∫

Rn

δt(η)δs(y + σx− σz − η) dη〉

= 〈uz, (δt ∗ δs)(y + σx − σz)〉

= 〈(uz , (δt ∗ δs)(x+ σy − z)〉

= (u ∗ δt ∗ δs)(x+ σy)

for all x, y ∈ R
n. Letting σ = I in (2.5) we have

(2.6) [(u ◦ T ) ∗ (δt ⊗ δs)](x, y) = (u ∗ δt ∗ δs)(x+ y)

for all x, y ∈ R
n. Similarly, we have

(2.7) [(u⊗ v) ∗ (δt ⊗ δs)](x, y) = (u ∗ δt(x)(v ∗ δs)(y)

for all x, y ∈ R
n. Convolving (δt ⊗ δs)(x, y) in (2.1), from (2.5), (2.6) and (2.7)

we have the functional equation

(2.8) (u ∗ δt ∗ δs)(x+ y) + (u ∗ δt ∗ δs)(x+ σy)− 2(u ∗ δt)(x)(v ∗ δs)(y) = 0
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for all x, y ∈ R
n. Since u ∗ δs is a smooth function, it is well known that

(2.9) u ∗ δt ∗ δs → u ∗ δs

uniformly on all compact subsets K ⊂ R
n as t → 0+. It follows from (2.8) and

(2.9) that

(2.10) f(x) := lim
t→0+

(u ∗ δt)(x)

exists for all x ∈ R and the convergence is uniform on all compact subsets
K ⊂ R

n, which implies

〈u, ϕ〉 = lim
t→0+

∫

Rn

(u ∗ δt)(x)ϕ(x) dx

=

∫

Rn

f(x)ϕ(x) dx

for all ϕ ∈ C∞

c (Rn), i.e., u = f in D′(Rn). Similarly, it follows from (2.8) that

(2.11) g(y) := lim
s→0+

(u ∗ δs)(y)

exists for all y ∈ R and the convergence is uniform on all compact subsets
K ⊂ R

n, which implies v = g in D′(Rn). Letting t → 0+ and then s → 0+ in
(2.8) we have

(2.12) f(x+ y) + f(x+ σy)− 2f(x)g(y) = 0

for all x, y ∈ R
n. By Lemma 2.4, we have

g(x) =
m(x) +m(σx)

2
(2.13)

for all x ∈ R
n, where m is an exponential function. In view of the proof in [27],

m is given by m(x) = g(x)−α(g(x+y0)−g(x+σy0)) for some α ∈ C, y0 ∈ R
n,

which implies that m is a measurable function since g is a measurable function.
It is well known that every measurable exponential function m : Rn → C is
given by m(x) = ec·x for some c ∈ C

n and every measurable additive function
a : Rn → C is given by a(x) = d · x for some d ∈ C

n. Thus, from (2.13) we
have

g(x) =
ec·x + ec·σx

2
=

ec·x + ecσ·x

2
(2.14)

for all x ∈ R
n, where cσ denotes matrix multiplication. By Lemma 2.4, if

c 6= cσ, then f is given by

f(x) = α1e
c·x + α2e

cσ·x(2.15)

for all x ∈ R
n and for some α1, α2 ∈ C, and if c = cσ we have

f(x) = ec·x
(
β + d · x

)
(2.16)

for all x ∈ R
n, where d ∈ C satisfies d = −dσ and β ∈ C. From the equalities

c = cσ and d = −dσ, replacing c by 2c and d by 2d we can write

g(x) = e(c+cσ)·x, f(x) = e(c+cσ)·x
(
β + (d− dσ) · x

)
(2.17)
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for all x ∈ R
n. This completes the proof. �

We denote by L1
loc(R

n) the set of all f : Rn → C such that
∫

K
|f(x)|dx < ∞

for every bounded measurable set K ⊂ R
n. Every f ∈ L1

loc(R
n) is viewed as a

distribution via the correspondence

〈f, ϕ〉 =

∫

Rn

f(x)ϕ(x) dx

for all ϕ ∈ C∞

c (Rn). Thus, as a direct consequence of Theorem 2.6 we solve an
Erdos’ type problem [18] for Wilson’s functional equation.

Corollary 2.7. Let Ω be a subset of R2n with 2n-dimensional Lebesgue measure

zero. Suppose that f, g ∈ L1
loc(R

n) satisfy

(2.18) f(x+ y) + f(x+ σy)− 2f(x)g(y) = 0

for all (x, y) ∈ (Rn × R
n) \ Ω. Then either there exist a set U ⊂ R

n of n-

dimensional Lebesgue measure zero, α1, α2 ∈ C and c ∈ C
n with c 6= cσ such

that

g(x) =
ec·x + ecσ·x

2
, f(x) = α1e

c·x + α2e
cσ·x(2.19)

for all x ∈ R
n \ U , or else there exist a set V ⊂ R

n of n-dimensional Lebesgue

measure zero and c, d ∈ C
n, β ∈ C such that

g(x) = e(c+cσ)·x, f(x) = e(c+cσ)·x
(
β + (d− dσ) · x

)
(2.20)

for all x ∈ R
n \ V .

Proof. By Theorem 2.6, equalities (2.19) and (2.20) hold in the sense of dis-
tributions, which implies the equalities hold for almost every x ∈ R

n. Let
U1 = {x ∈ R

n : g(x) 6= ec·x+ecσ·x

2 }, U2 = {x ∈ R
n : f(x) 6= α1e

c·x + α2e
cσ·x},

V1 = {x ∈ R
n : g(x) 6= e(c+cσ)·x}, V2 = {x ∈ R

n : f(x) 6= e(c+cσ)·x(β+(d−dσ) ·
x)}. Then we get (2.19) with U = U1 ∪ U2 and get (2.20) with V = V1 ∪ V2.
This completes the proof. �

Using the same method as in the proof of Theorem 2.6 we obtain the fol-
lowing.

Theorem 2.8. Let u, v ∈ D′(Rn) satisfy (2.2). Then (v, u) has the form

v =
ec·x + ecσ·x

2
, u =

ec·x + ecσ·x

2λ
,(2.21)

where c ∈ C
n and λ ∈ C with λ 6= 0.

Finally, we consider the functional equations (2.1) and (2.2) in the space
G′(Rn) of Gelfand generalized functions. Generalizing the Schwartz tempered
distribution [22], Gelfand and Shilov [20, 21] introduced the following space of
generalized functions.
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Definition 2.9 ([20, 21]). We denote by G(Rn) the Gelfand–Shilov space of
all infinitely differentiable functions ϕ in R

n such that

‖ϕ‖A,B = sup
x∈Rn, α, β∈N

n
0

|xα∂βϕ(x)|

A|α|B|β|α!1/2β!1/2
< ∞

for some A > 0, B > 0. We say that ϕj → 0 as j → ∞ if ||ϕj ||A,B → 0 as
j → ∞ for some A, B > 0, and denote by G′(Rn) the dual space of G(Rn) and
call its elements Gelfand–Shilov generalized functions.

It is known that the space G(Rn) consists of all infinitely differentiable func-
tions ϕ(x) on R

n which can be extended to an entire function on C
n satisfying

(2.22) |ϕ(x+ iy)| ≤ C exp(−a|x|2 + b|y|2), x, y ∈ R
n

for some a, b, C > 0 (see [20]).

Remark. The space G′(Rn) contains the space of Schwartz tempered distribu-
tions [22] and is a partial extension of D′(Rn). As a brief example, any infinite
sum u =

∑
∞

k=1 akδ
(k) does not belong to D′(Rn), but belongs to G′(Rn) under

some growth conditions on the sequence ak, k = 1, 2, 3, . . ..

In view of (2.22) it is easy to see that the n-dimensional heat kernel (see
[30])

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0,

belongs to the Gelfand-Shilov space G(Rn) for each t > 0. Thus, the convolution
(u ∗ Et)(x) := 〈uy, Et(x − y)〉 is well defined for all u ∈ G′(Rn). Instead of δt
employed in the proof of Theorem 3.4, using

γt =
Et + Et ◦ σ

2

and following the same approach as in the proof of Theorem 2.6 we obtain the
following.

Theorem 2.10. Let u, v ∈ G′(Rn) satisfy (2.1). Then either (v, u) is given by

v =
ec·x + ecσ·x

2
, u = α1e

c·x + α2e
cσ·x,(2.23)

where c ∈ C
n with c 6= cσ, α1, α2 ∈ C and c σ denotes matrix multiplication,

or

v = e(c+cσ)·x, u = e(c+cσ)·x
(
β + (d− dσ) · x

)
(2.24)

for all x ∈ R
n, where β ∈ C, c, d ∈ C

n.

Theorem 2.11. Let u, v ∈ G′(Rn) satisfy (2.2). Then (v, u) has the form

v =
ec·x + ecσ·x

2
, u =

ec·x + ecσ·x

2λ
,(2.25)

where c ∈ C
n and λ ∈ C with λ 6= 0.
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3. Ulam-Hyers stabilities of Eq. (1.6) and (1.7)

In this section, based on the results in [9] we consider the stability of func-
tional equations (1.6) and (1.7) for all x, y ∈ R

n, i.e., we deal with the functional
inequalities (1.8) and (1.9).

Theorem 3.1. Let f, g : Rn → C be unbounded Lebesgue measurable functions

satisfying the functional inequality (1.8) for all x, y ∈ R
n and for some γ ∈ R

n.

Then, g has the form

(3.1) g(x) =
ec·x + ec·σx

2
for all x ∈ R

n and for some c ∈ C
n. Assume that there exists z0 ∈ R

n such

that

(3.2) max{ℜc · z0, ℜc · σz0} > max{0, γ · z0}.

Then if c · x 6= c · σx for some x ∈ R
n, f has the form

f(x) = α1 e
c·x + α2 e

c·σx(3.3)

for all x ∈ R
n and for some α1, α2 ∈ C, and if c · x = c · σx for all x ∈ R

n, f

has the form

f(x) =
(
β + b · (x− σx)

)
ec·x(3.4)

for all x ∈ R
n and for some β ∈ C, b ∈ C

n.

Proof. By the result in [9, Theorem 2.2] we get

(3.5) g(x) =
m(x) +m(σx)

2

for all x ∈ R
n. In view of the proof in [27], m is given by m(x) = g(x) −

α(g(x + z0) − g(x + σz0)) for some α ∈ C, z0 ∈ R
n, which implies that m is

Lebesgue measurable. It is well known that every Lebesgue measurable solution
of the exponential functional equation is given by m(x) = ec·x for some c ∈ C

n.
Thus, from (3.5) we get (3.1). Now, we prove that if (3.2) is satisfied, then
there exists a sequence zk ∈ R

n, k = 1, 2, 3, . . . , such that |g(zk)| → ∞ and
|g(zk)|e

−γ·zk → ∞ as k → ∞. Let

(3.6) q(x) = |g(x)| e−γ·x =
1

2
e−γ·x | ec·x + ec·σx | .

First, we assume that ℜc · z0 6= ℜc · σz0. Without loss of generality we may
assume that ℜc · z0 > ℜc · σz0. Putting x = kz0, k = 1, 2, 3, . . . in (3.6) and
using the triangle inequality we have

q(kz0) =
1

2
e−kγ·z0

∣
∣ ekc·z0 + ekc·σz0

∣
∣(3.7)

≥
1

2
e−kγ·z0

∣
∣ ekℜc·z0 − ekℜc·σz0

∣
∣

=
1

2
ek(ℜc−γ)·z0

∣
∣
∣1− ekℜc·(σz0−z0)

∣
∣
∣
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=
1

2
Rk

∣
∣1− rk

∣
∣ ,

where R = e(ℜc−γ)·z0 and r = eℜc·(σz0−z0). By the condition (3.2) we see that

(3.8) R > 1, eγ·z0R = eℜc·z0 > 1 and 0 < r < 1.

Letting k → ∞ in (3.7) we have

q(kz0) ≥ Rk
∣
∣1− rk

∣
∣ → ∞

and hence

|g(kz0)| = ekγ·z0 q(kz0) ≥ (eγ·z0R)k |1− rk| → ∞

as k → ∞. Now, we assume that ℜc · z0 = ℜc · σz0. Putting x = kz0, k =
1, 2, 3, . . . in (3.6) and letting R = e(ℜc−a)·z0, θ = ℑc · (σz0 − z0) we have

q(kz0) =
1

2
e−kγ·z0 | ekc·z0 + ekc·σz0 |(3.9)

=
1

2
ek(ℜc−γ)·z0

∣
∣ekiℑc·z0 + ekiℑc·σz0

∣
∣

=
1

2
ek(ℜc−γ)·z0

∣
∣
∣1 + ekiℑc·(σz0−z0)

∣
∣
∣

=
1

2
Rk |1 + eiθk|.

Note that the set {eiθk | k = 1, 2, 3, . . .} forms either vertices of a regular
polygon (including {1} and {1,−1}) when θ/π is rational, or a dense subset of
the unit circle {z ∈ C | |z| = 1} when θ/π is irrational. Using this fact and the
condition (3.8), we can see that there exists a sequence

k1 < k2 < k3 < · · · < kj < · · ·

of positive integers such that Rkj |1+eiθkj | → ∞ and (eγ·z0R)kj |1+eiθkj | → ∞
as j → ∞. Thus, we have

q(kjz0) → ∞, |g(kjz0)| → ∞(3.10)

as j → ∞. Now, we repeat the proof in [9, Theorem 2.2] for the reader.
Replacing y by kjz0 in (1.8) and dividing the result by 2 |g(kjz0)| we have

∣
∣
∣
∣
f(x)−

f(x+ kjz0) + f(x+ σkjz0)

2 g(kjz0)

∣
∣
∣
∣
≤

eγ·kjz0

2 |g(kjz0)|
(3.11)

for all x ∈ R
n. Letting j → ∞ in (3.11) we have

f(x) = lim
n→∞

f(x+ kjz0) + f(x+ σkjz0)

2 g(kjz0)
(3.12)

for all x ∈ R
n. Multiplying both sides of (3.12) by 2 g(y) and using (1.8) and

(3.10) we have

2 f(x)g(y) = lim
j→∞

2 f(x+kjz0)g(y)+2 f(x+σkjz0)g(y)
2 g(kjz0)

(3.13)
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= lim
j→∞

f(x+kjz0+y)+f(x+kjz0+σy)+f(x+σkjz0+y)+f(x+σkjz0+σy)
2 g(kjz0)

= lim
j→∞

(
f(x+y+kjz0)+f(x+y+σkjz0)

2 g(kjz0)
+

f(x+σy+kjz0)+f(x+σy+σkjz0)
2 g(kjz0)

)

= f(x+ y) + f(x+ σy)

for all x, y ∈ R
n. Thus, using Lemma 2.4 with (3.13) we get the result. This

completes the proof. �

Remark 3.2. Let a, b ∈ R
n be two nonzero vectors that are not parallel, i.e.,

b 6= ra for all r ∈ R, r 6= 1. Then, the hyperplane b · x = 0 is not parallel
to (b − a) · x = 0 and hence there exists x0 ∈ R

n such that b · x0 > 0 and
(b− a) ·x0 > 0. If b = ra for some r ∈ R, r 6= 1, then there exists x0 ∈ R

n such
that b · x0 > 0 and (b− a) · x0 > 0 if and only if r > 1. Thus, if the involution
σ : Rn → R

n in Theorem 3.1 is given by a linear map, i.e., σ = A, an n × n

matrix, then using the above fact with a = γ and b = ℜc, ℜc · A, it is easy to
see that condition (3.4) is equivalent to

ℜc 6= rγ or ℜc · A 6= rγ

for all r ≤ 1. Now, the following example gives a transparent description of the
solutions of a functional inequality of the type (1.8).

Example 3.3. In Theorem 3.1, let n = 2, γ = (2, 1) and σ(u, v) = (2u +
3v,−u− 2v) for all u, v ∈ R. Then the functional inequality (3.1) becomes

(3.14) |f(t+ u, s+ v) + f(t+ 2u+ 3v, s− u− 2v)− 2f(t, s)g(u, v)| ≤ e2u+v

for all t, s, u, v ∈ R. Now, using Theorem 3.1 and Remark 3.2 we can ex-
hibit regular solutions (continuous, Lebesgue measurable solutions, etc.) of the
functional inequality (3.14) when f is unbounded. By Theorem 3.1 we have

(3.15) g(t, s) =
1

2

(
ec1t+c2s + e(2c1−c2)t+(3c1−2c2)s

)

for all t, s ∈ R and for some c1, c2 ∈ C. Since either ℜ(c1, c2) or ℜ(2c1−c2, 3c1−
2c2) is not parallel to γ = (2, 1), using Remark 3.2 we can see that condition
(3.2) is satisfied. Thus, if (c1, c2) 6= (2c1 − c2, 3c1 − 2c2), i.e., c1 6= c2, then f

has the form

(3.16) f(t, s) = α1 e
c1t+c2s + α2 e

(2c1−c2)t+(3c1−2c2)s

for all t, s ∈ R and for some α1, α2 ∈ C, and if c1 = c2, then f has the form

(3.17) f(t, s) =
(
β + d2(t+ 3s)

)
ed1(t+s)

for all t, s ∈ R and for some β, d1, d2 ∈ C.

Following the same methods as in the proof of Theorem 3.1 and using the
result in [9, Theorem 2.4] we obtain the following.
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Theorem 3.4. Let f, g : Rn → C be unbounded Lebesgue measurable functions

satisfying the functional inequality (1.9) for all x, y ∈ R
n and for some γ ∈ R

n.

Then, f has the form

(3.18) f(x) =
ec·x + ec·σx

2λ

for all x ∈ R
n and for some c ∈ C

n and λ ∈ C. In particular, the condition

(3.4) is satisfied. Then if c · x 6= c · σx for some x ∈ R
n, f has the form

f(x) = α1 e
c·x + α2 e

c·σx(3.19)

for all x ∈ R
n and for some α1, α2 ∈ C, and if c · x = c · σx for all x ∈ R

n, f

has the form

f(x) =
(
β + b · (x− σx)

)
ec·x(3.20)

for all x ∈ R
n and for some β ∈ C, b ∈ C

n.
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[19] I. Fenyö, Über eine Lösungsmethode gewisser Funktionalgleichungen, Acta Math. Acad.
Sci. Hungar. 7 (1956), 383–396.

[20] I. M. Gelfand and G. E. Shilov, Generalized Functions II, Academic Press, New York,
1968.

[21] , Generalized Functions IV, Academic, Press, New York, 1968.
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