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A POISSON EQUATION ASSOCIATED WITH
AN INTEGRAL KERNEL OPERATOR

Soon-Ja KANG

ABSTRACT. Suppose the kernel function x belongs 10 S(R?) and is sym-
metric such that < z® xz,k >> 0 for all z € S'(R). Let A be the class
of functions f such that the function f is measurable on S’(R) with

fsl(m) If((T + tK)%:c)Pdu(m) < M for some M > 0 and for all t > 0,

where K is the integral operator with kernel function . We show that
the A-potential G f of f is a weak solution of (Al — %Eo,z(m))u =f.

1. Introduction

Several generalizations of Schwartz distribution theory to infinite di-
mensional spaces have appeared in the recent years since the white noise
calculus has launched out by Hida in 1975.

In the infinite dimensional space the Lebesgue measure as one in finite
dimensional space doesn’t exist. So we can’t expect the same results
as ones in finite dimensional case. Gross[2] has developed a measure
theoretic structure well-suited to the study of potential theory on an
arbitrary separable Banach space. It is used to extend the potential
theory in R”™ to an infinite dimensional spaces.

Gross[2] has studied the infinite dimensional analogue of the heat
equation Q'L((-?tt’—xl = %Au(t, z) and Poisson equation Au = f on a abstract
Wiener space, where Au is the Gross Laplacian. Kuo[6], Piech[12] and
Lee[9,10] have proved some theorems in potential theory with respect to
Ornstein-Uhlenbeck process in abstract Wiener space. Kuo[7], Chung
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and Ji[1] proved some similar theorems associated with the Gross Lapla-
cian and Volterra Laplacian in white noise setting. Kang[4] has proved
that the solutions of generalized Poisson equations associated with num-
ber operator are represented by the A— potentials in white noise setting.

Gross Laplacian is defined on the space of test functionals (S) and
it has no extension to (S)*. We know that the Gross Laplacian is a
singular operator given by the trace kernel function. Furthermore, the
Hida distribution has no compact support and so we can not use the same
method that Gross has used to find the solution of Poisson equation.

In this paper we consider the integral kernel operator with a kernel
function as a symmetric function in S(R?). We show that the solution
of the Poisson equation associated the integral kernel operator, (Al —
%EO,Q(K))U = f, is represented by the A- potential.

2. White noise calculus

We shall shortly recall some necessary facts from white noise analysis
(3,7,11].

Let us consider the real Schwartz space S(R) and its dual space S'(R)
is equipped with the Borel o-algebra B of weak topology and with the
white noise measure p given by

/ ei<1;£>du(1') = GW%IEIZ { e ‘S‘(R)’
S'(R)

where | - |, denotes the norm on L?(R) and < -,- > is the dual pairing
between S'(R) and S(R). Then S(R) ¢ L*R) C S'(R) is a Gelfand
triple.

Let A denote the self-adjoint operator —71‘% +1+¢% on LQ(R). For
each p > 0, let Sp(R) be the L?(R)-domain of AP and the norm on it be
defined by

(2-1) | fl2,p = |AP fla.

Then Sp(R) is a Hilbert space and the dual of Sp(R) is denoted by
S_p(R). Moreover, we have S,(R) C S,(R) for p < 7 and

SR)=[]8&®), S'®) =JS HR)

p>0 p20
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The space S(R) is often regarded as a nuclear space with the family
{I-1,, : p > 0} of norms and (L*(R),S,(R)) is an abstract Wiener

space for any p > %
For p <0, we can still use (2-1) to define the norm |- |3 , on S,(R).
For n > 0, we let

Sp(R™) = {f € S'(R") : |fl2p = [(AP)®" fl2 < oo}

Let (L?) be the Hilbert space of complex- valued p-square integrable
functions with norm denoted by || - ||2. The well-known Wiener-Ito the-
orem states that the space (L?) has the following orthogonal decompo-

sition: -
(L*) = P K,
n=0

where K, consists of n-fold Wiener integrals I.(f), f € L?(R"), the
symmetric complex-valued L?-functions on R". It is well-known that
I.f(z) =<: 2®" :, f >, where : %" : is the Wick ordering.

Each ¢ € (L?) can be represented uniquely by

(2-2) p(z) = Z In fn(z)

= Z < .T®n Z,fn > fn € Lz(Rn)

n=0
and, moreover, we have

Il ¢ ||§= Z "”fnﬁg(nv)b
n=0
The second quantization I'(A) of A is densely defined on (L?) as
follows. For ¢ given as in (2-2), we define

(T(A)p)(z) =Y In(A®" fo)(2)

n=0

< z®m A®f, >

M

3
1l
o
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For p € R, let || ¢ ||2,,=|| I'(A)P¢ ||2. Then we have || ¢ [[2<[| ¢ |2,
for p > 0 . Now we can define the Sobolev space (S), for p > 0 by

(8)p ={r € (L*; |l ¢ ll2,p< 00}

Note that (S), is a complex Hilbert space with the norm || - ||2,,. For
p < 0, let (S§), be the completion of (L?) with respect to || ¢ ||2,,. The
dual space (S); of (8), is (§)—p,p > 0.

Let (S) be the projective limit of {(S),;p > 0}. Then (S) is a Fréchet
algebra and the dual space (§)* of (§) is the unior. of {(5);;p > 0} and
we get the following continuous inclusions

(8) C(S), C(LP) =(IP* C(S);C(S*, p>0.

The elements of (S) and (S)* are called the test functionals and Hida
distributions, respectively. The dual pairing of (S 1* and (S) is denoted
by < -, >, which is associated with the Gaussian measure y.

For each z € S'(R) the Gateaux differentiationn D, in the direction
z is a continuous linear operator from (S§) into itself. Its adjoint D} is
continuous from (§)* into itself. In particular, the white nowse differen-
tiation Oy = Ds, is continuous from (S) into itself. Its adjoint operator
0; is continuous from (§)* into itself. If £ € S(R), then D, extends by
continuity to a continuous linear operator f)g from (8)* into itself.

Let (H, B) be an abstract Wiener space. Suppcse ¢ is a twice Gross
differentiable function defined on B such that ¢"(z) is a trace class
operator of H. Then the Gross Laplacian[7] Agy of ¢ is defined by:

(Agp)(z) = traceygp"(z).

Note that (L*(R),S,(R)) is an abstract Wiener space for any p > 3.
Therefore, we can define Ag acting on ordinary Brownian functionals.
The set {z(t) : t € R} is taken as a coordinate system in white noise
calculus. Thus it is desirable to express the Gross Laplacian Ag in terms
of the Hida differentiation 0, and its adjoint 8;. We note [11] that the
Gross Laplacian and its adjoint are identified as

Acso=/3?sadt, ¢ €(S5)
R
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and

b = /(a;)2q>dt, d € (S8)".
R

Let 6(s,t) € S'(RHk),s = (81,82, ..y8;),t = (1,%2,...tx). The follow-
ing integral kernel operator is introduced in [3,117,

Zik(0) = / 8(s,t)0;, -+ 83,8y, - -~ By, dsdt.
RS +&

The operator = x(6) is continuous from (&) into (§)*. For example, let
7 be the element in S'(R?) , called trace, defined by

<t f >=/mf(t,t)dt, f e S(R?).

Then the associated operator =g 2(7) is continuous from (S) into itself
and =3 o(7) is continuous from (8)* into (S)*. These operators can be
identified as the Gross Laplacian and its adjoint, 1.e.,

1)

Ag = 0,2(7'):/ 7(8,1)0:0dsdt
]R?

AL = E50(r) = / 7(s,t)0;0f dsdt
R?

In particular, the Gross Laplacian is a singular operator in sense that
the kernel function 7 is a delta function.

3. Poisson equation with the integral kernel operator

Suppose the kernel function « belongs to S(R?) and is symmetric such
that < z @ =,k >> 0 for all z € S'(R). Let A be the class of functions
f such that the function f is measurable on §'(R) with fs'(m) |F((I+
tK)2z)[2du(z) < M for some M > 0 and for all ¢ > 0, where K is the
integral operator with kernel function «.

Note that the integral kernel operator o 2(x) = fg; #(51,52)3s, 0s,ds1
dsy is continuous from (S) into itself. Moreover, Z¢ 2(x) extends to a
continuous linear operator =g 5(x) from (S)* into itself[8).
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LEMMA 3.1[8]. Let R be a continuous linear operator from S'(R)
into S(R) such that it is positive and self-adjoint on Lz(R) Let f be

a measurable function on S'(R) with f<'(m) |F((I +tK)ziz)2du(z) < oo
for allt > 0. Then we have

Lo [ e R Pduduty = [ R Pdut),
"(R) JS'(R) S'(R)
Let f € A. We define P; g f as following;

(3-1)
<Pucfo>= [ [ s@)ftet K ndulyidute). o€ ()
"(R) /S'(R)

LEMMA 3.2. Py i f is well-defined and is a continuous linear func-
tional on (S),1.e.P, k f € (S)*.

PRrOOF. Note that for ¢ € (S) ,
| < Pxfé>|=] / / 8(z)f(z + () y)du(x)du(y)|
"(R) vS8'(R)

- / / 6(2)f (e + (HK) by ldpt 2 )du(y)
(R) JS'(IR)

/ / )2 dp(a)dp(y))
'(R) J S (R)

T )2 y)[*du(z)d )z

. / o o+ OR )ty

< / 16(2) Pdu(x)} H{ / AT+ K)o Pdu(o))
S'(R) S'(R)

— VA 6 l2< V| ¢ 2

for any p > 0, where the inequalities are justified by Holder’s inequality
and Lemma 3.1.
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PROPOSITION 3.3[8]. Let K be a continuous linear operator from
S'(R) into S(R) such that it is positive and self-adjoint on L*(R). Let f
be a measurable function on §'(R) with fs'(m) IF((I + tK)2a)2du(z) <
oc for all t > 0. Then the equation

Ou(t,z 1=
2) o L Zualeulte), w(0.) =1
has a unique weak solution. Moreover, the solution is given by

tﬂﬂﬁ=/f@+ﬁKﬁwww)

REMARK. By Lemma 3.2 we note that Py i f isin (&)* for all f € A
and that we have an another expression [8] of (3.1);

(3-2)
< Pif 6 >= / / f(2)6(z — ViR y)w(t, 2, y)du(z)du(y)
'(R) '(R)

where w(t,z,y) = exp[v < z,VKy > —3t <y, Ky >].
We define a functional G f : (S) — R by

< GK'fa ¢ >= / e—/\t < Pt,Kfa d) > dt.
0

LEMMA3.4. Let f € A. Then G f is a continuous linear functional
on (8), i.e. Gi f € (5)*.

PROOF. We note from the proof of Lemma 3.2 that | < Poxf, ¢ >
| < VM || ¢ |l2,p- Thus we easily see that for every p 2 0
X0
| <« Gxf,é6>|= l/ e M L Py f, 6> di|
0

le o}
< / M| & Puycfié > |dt
0

SV 6Ly [ e
0
<V 8
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Let d.(z) =< z,Kz > —Trace;2(y)K and let V, be the operator
Vid(z) =< Kz,¢'(z) > on (§). Define

A,c = EQ’Q(KZ) - ZVK + 195-

It is easy to check [8] that A, is continuous frora (S) into itself and

._..0 2(/‘6) *

THEOREM 3.5. Let K be a continuous linear operator from S'(R)
into S(R) such that it is positive and self-adjoint on L%(R). Let f € A.
Then u = Gk f is a weak solution of the equation

(AL = SZ0 () = .

PRrOOF. First we need to show that P, x f converges weakly to f as
t—0,ie.

(3-3) lim < Poicf,d >=< f.¢ >, forallge(S).

In fact, this follows from (3.2), the Lebesgue Dominated Convergence
Theorem and the 1nequahty in the proof of Lemma 3.2. Now using the
equality Zg (k) = A%, Proposition 3.3, the integral by parts formula
and (3.3), we have for all ¢ € (S)

N 1
< 5502(R)Gx f.¢ > =< Grfy5hnt >

l\le—‘

o0 1
= / e-)‘t < Pt,Kfs §A~¢ > dt
0
(o o] 1 .
= / M« 550,2Pt,1(fa ¢ > dt
0

> 0
= / e M« aPt,};f, ¢ > dt
0
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R
0
. . -2t
= lim lim ~ <Pk d
110Rl1 E e L P gf, o> dt

— lim lim [e™ < P f, ¢ >)F

e—0 R—oo
R
+ Aim lim e ML Pgf o> dt

¢—0 R—oo [,

=-<f,¢>+A LGkl 0>
=L —f+AGkf,¢>.

Hence the desired result is obtained.
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