• 제목/요약/키워드: skew symmetric

검색결과 69건 처리시간 0.026초

FINDING THE SKEW-SYMMETRIC SOLVENT TO A QUADRATIC MATRIX EQUATION

  • Han, Yin-Huan;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.587-595
    • /
    • 2012
  • In this paper we consider the quadratic matrix equation which can be defined be $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix; A,B and C are $n{\times}n$ given matrices with real elements. Newton's method is considered to find the skew-symmetric solvent of the nonlinear matrix equations Q(X). We also show that the method converges the skew-symmetric solvent even if the Fr$\acute{e}$chet derivative is singular. Finally, we give some numerical examples.

A GENERALIZATION OF LOCAL SYMMETRIC AND SKEW-SYMMETRIC SPLITTING ITERATION METHODS FOR GENERALIZED SADDLE POINT PROBLEMS

  • Li, Jian-Lei;Luo, Dang;Zhang, Zhi-Jiang
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1167-1178
    • /
    • 2011
  • In this paper, we further investigate the local Hermitian and skew-Hermitian splitting (LHSS) iteration method and the modified LHSS (MLHSS) iteration method for solving generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. When A is non-symmetric positive definite, the convergence conditions are obtained, which generalize some results of Jiang and Cao [M.-Q. Jiang and Y. Cao, On local Hermitian and Skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 2009(231): 973-982] for the generalized saddle point problems to generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. Numerical experiments show the effectiveness of the iterative methods.

ON THE INDEX AND BIDERIVATIONS OF SIMPLE MALCEV ALGEBRAS

  • Yahya, Abdelaziz Ben;Boulmane, Said
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.385-397
    • /
    • 2022
  • Let (M, [ , ]) be a finite dimensional Malcev algebra over an algebraically closed field 𝔽 of characteristic 0. We first prove that, (M, [ , ]) (with [M, M] ≠ 0) is simple if and only if ind(M) = 1 (i.e., M admits a unique (up to a scalar multiple) invariant scalar product). Further, we characterize the form of skew-symmetric biderivations on simple Malcev algebras. In particular, we prove that the simple seven dimensional non-Lie Malcev algebra has no nontrivial skew-symmetric biderivation.

Analysis of wave motion in an anisotropic initially stressed fiber-reinforced thermoelastic medium

  • Gupta, Raj Rani;Gupta, Rajani Rani
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.1-10
    • /
    • 2013
  • The present investigation deals with the analysis of wave motion in the layer of an anisotropic, initially stressed, fiber reinforced thermoelastic medium. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for Cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are also deduced.

A GENERALIZATION OF THE SYMMETRY PROPERTY OF A RING VIA ITS ENDOMORPHISM

  • Fatma Kaynarca;Halise Melis Tekin Akcin
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.373-397
    • /
    • 2024
  • Lambek introduced the concept of symmetric rings to expand the commutative ideal theory to noncommutative rings. In this study, we propose an extension of symmetric rings called strongly α-symmetric rings, which serves as both a generalization of strongly symmetric rings and an extension of symmetric rings. We define a ring R as strongly α-symmetric if the skew polynomial ring R[x; α] is symmetric. Consequently, we provide proofs for previously established outcomes regarding symmetric and strongly symmetric rings, directly derived from the results we have obtained. Furthermore, we explore various properties and extensions of strongly α-symmetric rings.

Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory

  • Hadi, Amin;Nejad, Mohammad Zamani;Rastgoo, Abbas;Hosseini, Mohammad
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.663-672
    • /
    • 2018
  • This paper contains a consistent couple-stress theory to capture size effects in Euler-Bernoulli nano-beams made of three-directional functionally graded materials (TDFGMs). These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in all three axial, thickness and width directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of minimum potential energy. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of TDFG nano-beam. At the end, some numerical results are performed to investigate some effective parameter on buckling load. In this theory the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

Vibration analysis of wave motion in micropolar thermoviscoelastic plate

  • Kumar, Rajneesh;Partap, Geeta
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.861-875
    • /
    • 2011
  • The aim of the present article is to study the micropolar thermoelastic interactions in an infinite Kelvin-Voigt type viscoelastic thermally conducting plate. The coupled dynamic thermoelasticity and generalized theories of thermoelasticity, namely, Lord and Shulman's and Green and Lindsay's are employed by assuming the mechanical behaviour as dynamic to study the problem. The model has been simplified by using Helmholtz decomposition technique and the resulting equations have been solved by using variable separable method to obtain the secular equations in isolated mathematical conditions for homogeneous isotropic micropolar thermo-viscoelastic plate for symmetric and skew-symmetric wave modes. The dispersion curves, attenuation coefficients, amplitudes of stresses and temperature distribution for symmetric and skew-symmetric modes are computed numerically and presented graphically for a magnesium crystal.

RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC METRIC P-CONNECTION

  • Chaubey, Sudhakar Kr;Lee, Jae Won;Yadav, Sunil Kr
    • 대한수학회지
    • /
    • 제56권4호
    • /
    • pp.1113-1129
    • /
    • 2019
  • We define a class of semi-symmetric metric connection on a Riemannian manifold for which the conformal, the projective, the concircular, the quasi conformal and the m-projective curvature tensors are invariant. We also study the properties of semisymmetric, Ricci semisymmetric and Eisenhart problems for solving second order parallel symmetric and skew-symmetric tensors on the Riemannian manifolds equipped with a semi-symmetric metric P-connection.

AHP에서 왜대칭행렬의 고유분해를 이용한 중요도 추정법의 제안 (An Estimating Method for Priority Vector in AHP, Using the Eigen-Decomposition of a Skew-Symmetric Matrix)

  • 이광진
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.119-134
    • /
    • 2004
  • AHP기법에서는 의사결정 요소들의 중요도를 추정함에 있어 통상 쌍대비교행렬 그 자체에 고유벡터법 또는 대수최소제곱법을 적용한다. 본 연구에서는 왜대칭행렬의 고유분해를 통해 쌍대비교행렬을 조정한 후 조정된 쌍대비교행렬에 대해 고유벡터법 또는 대수최소제곱법을 적용하는 중요도 추정법을 제안한다. 그리고 이 추정법이 가지는 여러 가지 이점과 의미를 이론적 근거와 실제 사용 예를 통해 보이고자 한다. 본 연구결과는 불일치성이 높은 쌍대비교행렬이 주어진 경우 불일치성을 줄이는데 특히 유용하게 활용될 수 있을 것이다.