• Title/Summary/Keyword: singular matrix problem

Search Result 73, Processing Time 0.028 seconds

Hankel approximation of commensurate input delay systems (복수 입력 시간지연 시스템의 한켈 근사화)

  • 황이철;태전쾌인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1452-1455
    • /
    • 1997
  • This paper studies the problem of approximating commensurate input delay sustems by finite dimensional systems based on the Hankel singular values. I is shown that the Gankel singular values are solutions a trancendental equation and the Hankel singular vectors are obtained form the kernel of the matrix. The computaioin is carried out in state spae framework. Once singular values and vectors are calcualted, finite dimensional approximated systems are constructed using stadnard linear system computational tools. An example is included.

  • PDF

Non-stationary mixed problem of elasticity for a semi-strip

  • Reut, Viktor;Vaysfeld, Natalya;Zhuravlova, Zinaida
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.77-89
    • /
    • 2020
  • This study is dedicated to the dynamic elasticity problem for a semi-strip. The semi-strip is loaded by the dynamic load at the center of its short edge. The conditions of fixing are given on the lateral sides of the semi-strip. The initial problem is reduced to one-dimensional problem with the help of Laplace's and Fourier's integral transforms. The one-dimensional boundary problem is formulated as the vector boundary problem in the transform's domain. Its solution is constructed as the superposition of the general solution for the homogeneous vector equation and the partial solution for the inhomogeneous vector equation. The matrix differential calculation is used for the deriving of the general solution. The partial solution is constructed with the help of Green's matrix-function, which is searched as the bilinear expansion. The case of steady-state oscillations is considered. The problem is reduced to the solving of the singular integral equation. The orthogonalization method is applied for the calculations. The stress state of the semi-strip is investigated for the different values of the frequency.

The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone (비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석)

  • Jin, Tae-Eun;Choe, Hyung-Jip;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

SPECTRAL ANALYSIS OF THE MGSS PRECONDITIONER FOR SINGULAR SADDLE POINT PROBLEMS

  • RAHIMIAN, MARYAM;SALKUYEH, DAVOD KHOJASTEH
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.175-187
    • /
    • 2020
  • Recently Salkuyeh and Rahimian in (Comput. Math. Appl. 74 (2017) 2940-2949) proposed a modification of the generalized shift-splitting (MGSS) method for solving singular saddle point problems. In this paper, we present the spectral analysis of the MGSS preconditioner when it is applied to precondition the singular saddle point problems with the (1, 1) block being symmetric. Some eigenvalue bounds for the spectrum of the preconditioned matrix are given. We show that all the real eigenvalues of the preconditioned matrix are in a positive interval and all nonzero eigenvalues having nonzero imaginary part are contained in an intersection of two circles.

Delay-dependent $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays (다중 상태 시간지연을 가지는 연속시간 특이시스템의 지연종속 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.22-28
    • /
    • 2009
  • In this paper, we consider the problem of $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays. The aim of designed filter is to guarantee regularity, impulse-free, asymptotic stability and $H_{\infty}$ norm bound of filtering error singular system. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent BRL (bounded real lemma) for singular systems with multiple state-delays is derived. Based on the result, the existence condition of $H_{\infty}$ filter and filter design method are proposed in terms of LMI (linear matrix inequality). Finally, a numerical example is provided to show the validity of the design methods.

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.

Parametric Approaches for Eigenstructure Assignment in High-order Linear Systems

  • Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.419-429
    • /
    • 2005
  • This paper considers eigenstructure assignment in high-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related with a type of so-called high-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically very simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effect of the proposed approaches.

A study on the Hankel approximation of input delay systems (입력 시간지연 시스템의 한켈 근사화에 관한 연구)

  • Hwang, Lee-Cheol;Ha, Hui-Gwon;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.308-314
    • /
    • 1998
  • This paper studies the problem of computing the Hankel singular values and vectors in the input delay systems. It is shown that the Hankel singular values are solutions to a transcendental equation and the Hankel singular vectors are obtained from the kernel of the matrix. The computation is carried out in state space framework. Finally, Hankel approximation of a simple example shows the usefulness of this study.

  • PDF

THE PERIODIC JACOBI MATRIX PROCRUSTES PROBLEM

  • Li, Jiao-Fen;Hu, Xi-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.569-582
    • /
    • 2010
  • The following "Periodic Jacobi Procrustes" problem is studied: find the Periodic Jacobi matrix X which minimizes the Frobenius (or Euclidean) norm of AX - B, with A and B as given rectangular matrices. The class of Procrustes problems has many application in the biological, physical and social sciences just as in the investigation of elastic structures. The different problems are obtained varying the structure of the matrices belonging to the feasible set. Higham has solved the orthogonal, the symmetric and the positive definite cases. Andersson and Elfving have studied the symmetric positive semidefinite case and the (symmetric) elementwise nonnegative case. In this contribution, we extend and develop these research, however, in a relatively simple way. Numerical difficulties are discussed and illustrated by examples.

ON DIFFERENTIABILITY OF THE MATRIX TRACE OPERATOR AND ITS APPLICATIONS

  • Dulov, E.V.;Andrianova, N.A.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.97-109
    • /
    • 2001
  • This article is devoted to “forgotten” and rarely used technique of matrix analysis, introduced in 60-70th and enhanced by authors. We will study the matrix trace operator and it’s differentiability. This idea generalizes the notion of scalar derivative for matrix computations. The list of the most common derivatives is given at the end of the article. Additionally we point out a close connection of this technique with a least square problem in it’s classical and generalized case.