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Parametric Approaches for Eigenstructure
Assignment in High-order Linear Systems

Guang-Ren Duan

Abstract: This paper considers eigenstructure assignment in high-order linear systems via
proportional plus derivative feedback. It is shown that the problem is closely related with a type
of so-called high-order Sylvester matrix equations. Through establishing two general
parametric solutions to this type of matrix equations, two complete parametric methods for the
proposed eigenstructure assignment problem are presented. Both methods give simple complete
parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The
first one mainly depends on a series of singular value decompositions, and is thus numerically
very simple and reliable; the second one utilizes the right factorization of the system, and
allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization
procedures. An example shows the effect of the proposed approaches.
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1. INTRODUCTION

This paper is concerned with the control of the
following high-order dynamical linear system

A w4, A7V ok it dyx=Bu, (1)

where xeR”, and #eR’, are the state vector and
the control vector, respectively; 4, e R™", 7/=0,1,

2,...,m, and BeR™ are the system coefficient
matrices, which satisfy the following assumption.

Assumption Al: det(.4,)#0, rank(Z)=r.

The above system (1) reduces to a second-order linear
system and a first-order linear system when » takes
the value of 2 and 1, respectively.

Eigenstructure assignment in first-order Ilinear
systems has been studied by many authors (see [1-4]
and the references therein). As a special case of (1),
second-order linear systems have found applications
in many fields, such as vibration and structural
analysis, spacecraft control and robotics control, and
hence have attracted much attention ([5-18]).
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Concerning the control of second-order linear systems,
many results are focused on stabilization (for e.g.
[6,7]) and pole assignment ([8-11]). Regarding
eigenstructure assignment in second-order linear
systems, there have also been some results ([12-18]).
Reference [12] considers eigenstructure assign-
ment in a special class of second-order linear systems
using inverse eigenvalue methods. Reference [13]
proposes an algorithm for eigenstructure assignment
in second-order linear systems, with the system
coefficient matrices satisfying certain symmetric
positivity condition. This algorithm is attractive
because it utilizes only the original system data. In
[14], an effective method for partial eigenstructure
assignment is proposed for second-order linear
systems with all the coefficient matrices symmetric. In
[15], the problem of robust eigenstructure assignment
is treated for second-order linear systems. The design
degree of freedom provided by eigenstructure
assignment is utilized to minimize the condition
number of the closed-loop system. Another approach
for eigenstructure assignment in second-order linear
systems using a proportional plus derivative feedback
controller is proposed by [16], where simple, general,
and complete parametric expressions in direct closed
forms for both the closed-loop eigenvector matrix and
the feedback gains are established. As in [13], the
approach utilizes directly the original system data, and
involves manipulations on only #-dimensional
matrices. However, the approach has the disadvantage
that it requires the controllability of the matrix pair
(4),5), which is not satisfied in some applications.
Very recently, [17,18] consider eigenstructure
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assignment in second-order linear systems via
proportional plus derivative feedback. It relates the
problem with a type of so-called second-order
Sylvester matrix equations. Through establishing two
general parametric solutions to the type of matrix
equations, two complete parametric methods for the
proposed eigenstructure assignment problem are
presented. Both methods give simple complete
parametric expressions for the feedback gains and the
closed-loop eigenvector matrices.

Letting
( A7D )T } )

P [ AT
the high-order linear system (1) can be converted into
the following extended first-order state-space model

z=Az+Bu, 2)
where

o 7z,

A,= ' . B
‘ Z,
1 1 i
A, A -4, 4 A, Ay
r T
LT

£,=|0 - 0 (4,'5) } : )

Therefore, control of the high-order linear system (1)
can be realized by investigating the corresponding
extended first-order state-space model (2)-(4). As a
consequence, the results will eventually involve
manipulations on s dimensional matrices A4, and 5,.
Furthermore, such a conversion process may be ill-
conditioned and produces a first-order model with
very low precision.

In this paper we consider eigenstructure assignment
in the high-order linear system (1) via proportional
plus derivative coordinate control. The intension is to
provide simple direct methods which utilize only the
original system coefficients 4, 7=12,...,m Two
complete parametric approaches are presented. Both
approaches provide very simple, complete parametric
expressions for the closed-loop eigenvector matrices
and the feedback gains. These expressions contain a
group of parameter vectors which represent the design
degrees of freedom and can be properly further chosen
to produce a closed-loop system with some desired
system specifications. The first approach mainly de-
pends on a series of singular value decompositions,
and is thus numerically very simple and reliable; the
second one, which utilizes the right factorization of
the system, happens to be a natural generalization of
the parametric method proposed in [1] (see also {2.,3])
for eigenstructure assignment in first-order state-space
descriptor linear systems. Furthermore, the presented

results also generalize the parametric methods
proposed in [17] (see also [18]) for eigenstructure
assignment in second-order linear systems. With this
approach, besides the group of parameter vectors, the
closed-loop eigenvalues may also be treated as a part
of the degrees of design freedom since they appear
directly in the expressions of the eigenvector matrix
and the feedback gains, and hence are not necessarily
chosen @ priors, and can be set undetermined and
sought via certain optimization procedures.

The paper is composed of six sections. Section 2
gives the formulation of the eigenstructure assignment
problem for high-order linear systems, and also relates
it to a problem of solving a type of high-order
Sylvester matrix equations. Section 3 proposes two
complete parametric solutions to the type of m-th
order Sylvester matrix equations. Based on these
solutions proposed in Section 3, two parametric
methods are proposed in Section 4 for the formulated
eigenstructure assignment problem. In Section 5, two
algorithms are further presented. As an application,
the control of a three-axis dynamic flight motion
simulator is considered in Section 6.

2. PROBLEM FORMULATION

For the high-order dynamical system (1), by
choosing the following control law

u=FRyx+ FRit+ F A"V EeR™,  (5)
we obtain the closed-loop system as follows:

A, (A, ~ BF, NA"D 4.
(4 — BR)x+ (4 — BFy)x=0. (6)

Note thatdet(.4,,) =0, the above system (6) can be
written in the first-order state-space form

z=A,z @)
with
0 7,
Aec. = ‘ [ 5 (8)
n

& A& A

where
A =4, (4~ BF), i=012,..m-1,

Recall the fact that a nondefective matrix possesses
eigenvalues which are less sensitive to the parameter
perturbations in the matrix, we here require the
closed-loop matrix 4,. to be nondefective, that is, the
Jordan form of the matrix .4, possesses a diagonal
form:
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A =diag(s1,59,...,5,,,) )
where s, 7=1,2,...,/mn, are clearly the eigenvalues
of the matrix A4,..

Lemma 1: Let 4..and A be given by (8) and (9),
respectively. Then there exist matrices #; =C”"”,
7=0,1,2,...,m-1, satisfying

7 "
A 4
| . |=] . A (10)
I/;n—l ymfl

if and only if there exists a matrix /e C”"”

satisfying
A VN +( A, - BE, WA+ (11)
+( A — BEYWA + (4 — BR)V =0.
In this case, the set of matrices 7, 7/=0,1,2,

7
...,m—1, satisfying (10) are given by
Ww=V¥, and V;=F_A, i=12,...,m. (12)

z -

Proof: Since

" WA
% ziA
: A= : ?
Vi Von 1A
and
][0 4 %
% %
Ae‘c : = 7/
n
V) |4 A4 - Ay P
1
- Vm—l ’
-1
20 AV
the equation (10) is cleérly equivalent to
Vi=V_ A, =12,....m (13)
and
m-1
=2 Ay (4= BE)V; =V, A, (14)
=0

Clearly, the equation (14) can be equivalently
converted into
m—1
D (= BEY;+ 4,7, 1A =0. (15)
=0

Using the relations in (13), we can obtain the relations
V,=VA', i=1,2,...m-1.
Substituting these relations into (15) yields

AV N (A, - BF, WoA" 4.
+(A4 — BR)A + (4 — BFRy) 7 =0.

With the above deduction, the conclusion obviously
follows. O

The above lemma states that the Jordan matrix of
A, is A if and only if there exists a matrix

VeC™™ satisfying (15), and in this case the
corresponding eigenvector matrix of 4, is given by

%

VA
Ze=| . | (16)

A"

With the above understanding, the problem of
eigenstructure assignment in the high-order dynamical
system (1) via the proportional plus derivative
feedback law (5) can be stated as follows.

Problem ESA (Eigenstructure assignment): Given
system (1) satisfying Assumption Al, and the matrix
A =diag(s1,5,...55,,), With Sy 7=1,2,...,mn,
being a group of self-conjugate complex numbers (not
necessarily distinct), find a general parametric form

for the matrices £ eR™, 7/=0,1,2,...,m—1, and

V e C”" such that the matrix equation (11) and the
condition

V
VA
det| . |#0, - )
A"
are satisfied.
Letting
W=F, VA" vk BVA+ BV
14
VA (18)
L S A |
7
then (11) becomes
A YN+ + AVA + 4V = BW. (19)

Clearly, (19) becomes the type of generalized
Sylvester matrix equation investigated in [1,2,19]
when #»=1, and becomes the second-order (or
quadratic) Sylvester matrix equation [17,18] when
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#=2. Due to this fact, we call the equation (19) the 7-
th order generalized Sylvester matrix equation.

It follows from the above deduction that, once a
pair of matrices 7 and # satisfying the high-order
generalized Sylvester matrix equation (19) and
condition (17) are obtained, the control gain matrices

£, 7=0,1,2,...,m—1, can be easily obtained as
7 T
VA
(55 K - Fpl=W|
7%

Therefore, to solve Problem ESA, the key step is to
solve the following problem.
Problem HSE (High-order Sylvester equation):

Given the matrices 4 eR™”, 7=0,1,2,...,m,

B e R™ satisfying Assumption Al, and a diagonal
matrix

A =diag(s, 5,,...,5,) € C7Y, (20)

find a parameterization for all the matrices » e C”?
and # eC™? satisfying the m-th order Sylvester
matrix equation (19).

It should be noted that the number of columns of
the matrices 7, # and A in the above Problem

HSE are changed to ¢ because this makes the Problem
HSE more general.

3. SOLUTION TO PROBLEM HSE

Denote
V=|:Vl vy e Vq:l, (21)
w=[m w - w, |, (22)

then, in view of (20), we can convert the high-order
Sylvester matrix equation (19) into the following
column form

(J'll'ﬂAm +‘Y1,'”_1‘4m—1 +oots A4 +Ap)v; = B, (23)
=12,...q

3.1. Case of prescribed s, 7=12,...,9

The equations in (23) can be further written in the
following form

v, ]
I1, =0, 7/=12,...,9, (24)
2
where

I, =[s,’~”A,,, g s A+ Ay - ] 25)

i=12,...,q.

This states that

[Vl} =kerIl, /=1,2,...,7. (26)

w;

The following algorithm produces two sets of
constant matrices &, and 2, 7=1,2,...,g, to be used in
the representation of the solution to the matrix
equation (19).

Algorithm P1 (Solving /;and D)):

Step 1: Through applying SVD to the matrices

I, 7=12,...,9, obtain two sets of unitary matrices

Vil

PeC™ and QieC(”+r)X(”+r), i=1,2,...,9,
satisfying

diag(oy,09,...,0,.) 0
f;n,g,.:{ 81 02 ) 0},;‘:1,2,...,%(27)

where o, >0, 4#=12,...,7, are the singular values
of II,, and

7 =rank[yf”Am N NN A 3],
=12,...,9. (28)

Step 2: Obtain the matrices , e C”"*"™") and
Dl‘e(Crx(””_”"), i=1,2,...,4, by partitioning the

matrices ¢J; as follows:

ST 9
o= . D, , I=1L2,...,q. 29)
As a result of (27) and (29), the matrices
N e Cﬂx(n+r—n1») and D e (Crx(/1+r—n,-) i=1.2

7 7 ’ yégreny
¢, obtained through above Algorithm P1 satisfy

Y Y
I1, =0, rank =n+r—n, 30)
2; 2;
=L2,...,q9
.

This indicates that the columns of { } form a set

(
of basis for kerIl,.

The above deduction clearly yields the following
result.

Theorem 1: Let ~, ~=1,2,...,q, be defined by (28),
and A, eC”" %) and D, eCPUTT, 12,

..,¢, be obtained via Algorithm P1. Then all the

matrices / and # satisfying the high-order Sylvester
matrix equation (19) can be parameterized by columns
as follows:

|| Vi '=1,2
S AR e 31)

z z
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where f; e C"77,
arbitrary parameter vectors.

Definition 1: The high-order dynamical system (1)
is called controllable if and only if the corresponding
extended first-order state-space representation (2)-(4)
is controllable.

Regarding the controllability of system (1), we have
the following basic result which is an extension of the
well-known PBH criterion.

Lemma 2: The high-order dynamical system (1) is
controllable if and only if

/=1,2,...,q, are a set of

rank[s’”Am ot sA + 4 b’] =n, VseC. (32)
Proof: By the well-known PBH criterion, we need
only to show that condition (32) is equivalent to

rank[ A4, - s/, B,|=mn, ¥seC,

mn

where 4, and 2B, are given by (3).
Since

e

rank[Ae -s/,, B ]

-5/, /, 0
= rank s/, 7, 0
-4, 4 4,4 A, ~sl, 4,8
(-s7, 1, 0
=rank . - )
—s/,, 7, 0
L_AO _‘41 ' _Am—l _SAm B
o0 7z, 0
0 -5/, 7, 0
=rank| s/, 7, 0
7 .
DA -4 -4 -4, -4, B
L =0 ' J
77 .
=n(m-1)+rank| Y 45 B|,
=0
the conclusion clearly follows. O

Based on the above lemma, the following corollary
of Theorem 1 can be immediately derived.

Corollary 1: Let system (1) be controllable, and
A be given by (20), then the degrees of freedom
existing in the general solution to the high-order
Sylvester matrix equation (19) is ¢7.

Proof: Due to the controllability of system (1), we
have from Lemma 2 that #,=», 7=12,...,q. Thus

the conclusion immediately follows from Theorem 1.

3.2. Case of undetermined s;, 7= 1,2,}. s
By performing the right factorization of

-1
G(;):(;’”Am + 5", et 54 +AQ)) B,

we can obtain a pair of polynomial matrices
N(s)eR™ [s] and D(s)e R [s] satisfying

(J/”Am +--~+.S'/41 +A0)_IB= N(J')D_I(J')' (33)

Theorem 2: Let the system (1) be controllable, and
N(s)e R™[s] and D(s)e R™[s] satisfy the right

factorization (33). Then
(1) The matrices ¥ and # given by (21), (22) with

{V’l =[N(S")} for 1=12,000q (34)
14/1. D(Sl.) 7?2 > b E
satisfy the high-order Sylvester matrix equation (19)
forall f;eC’, i=12,....q
(2) When
M(s.
rank{ (Sl)} =7,
D(Sl')

hold, (34) gives all the solutions to Problem HSE.
Proof: It follows from (33) that

=12,...,q (35)

(57" 457 4 + A)V(5;) = BD(s) =0, (36)
/=12,...,q9

Using (34) and (36), yields
(57 A, ++ 8, A + Ay)v, — Bw;
=[ (57 e 5,4 + ) Vs) = BDs) |
=0, /=12,...q.

This states that the equations in (23) hold. Therefore,
the first conclusion of the theorem is true.

It follows from Corollary 1 that, under the
controllability of system (1), the degrees of freedom
existing in the general solution to the matrix equation
(19), with A given by (20), is ¢~ while in the
solution (34), the number of free parameters just equal
to g7. Further, it is clear that all these parameters in
the solution (34) have contributions when condition
(35) holds. With this we complete the proof. O

Remark 1: The right factorization (33) performs a
fundamental role in the solution (34). When s,
7=1,2,...,q, are chosen to be different from the

zeros of det(y’”Am N MR +A0), we
can take
Ms) = Adj(s’”Am +5" A et s +AO)B

D(s)= det(s’”A,,, F L NPy 4])[, X
37)
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In many practical applications, we often have »=#,
and det £+ 0. In this case, note that

(5’”,4,,, 5" A, et s +A())_l B
:[Fl (J’”Am+s”"1,4m_1 +ot s +AO)T’

we can take
{ Ms)=1,

D(s)=F" (;f”A,,, 5N s +/10). %)

For the general case, one can refer to [21,22] for some
general numerical algorithms solving such right
factorizations. Alternatively, the following simple
procedure can also be used.

Algorithm P2 (Right coprime factorization):

Step 1: Under the controllability of system (1), find
a pair of unimodular matrices As) And (As), of

appropriate dimensions, satisfying
P "y +ooo4 5 + -B]Q(s) =z, o].

Step 2: Obtain the pair of polynomial matrices
Ms)eR™ [s] and D(s)eR™[s] by partition-
ing the unimodular matrix (Xs) as follows:

* Ms)
x Ds)|

It is worth pointing out that the pair of polynomial
matrices Ms)e R”[s] and 2(s)e R™/[s] satisfying

the right factorization (33) obtained from the above
Algorithm P2 are right coprime since

As) =[

M)
2Xs)

This condition certainly implies the condition (35),
which ensures the completeness of the solution (34).

To finish this section, let us finally give a remark
on the extension of the result.

Remark 2: The main results in this section can be
easily extended into the case that the matrix A is a
general Jordan form. In fact, when A is replaced
with the following Jordan matrix

rank[ ]=r, vseC.

J/ = Blockdiag(/, /,...,/,) € C¥,

with
s, 1
s, ok
J= . ) eC% ) 1=12,..,p,

Sy

following the development in [1,2,19], we can show
that all the matrices #"and # satisfying the high-order
Sylvester matrix equation (19) are given by

SUA

izl v v )
and

WK W ]

WZZ[WA ) Wlp,}
with

ve | [ M) M(s,)
{WJ - |:D(‘Y1')}ﬁ {d”(s,‘)}ﬂ_]

+ 1 N(k_])(si) f
(£-1)!] pAD () b

£=12,....p, 7=12,...,p,

where Ms)eR™[s] and D(s)eR™[s] are a
pair of polynomial matrices satisfying the right
factorization (33) and condition (35).

4. SOLUTION TO PROBLEM ESA

Regarding the solution to Problem ESA, we have
the following two results based on the discussion in
Section 2 and the results in Section 3.

Theorem 3: Let #;, 7=L12,...,77, be given by
(28), and N, eC™U" ) and e CUHT),
/=1,2,...,mn, be given by Algorithm P1. Then

(1) Problem ESA has a solution if and only if there
exist a group of parameters /£ eC”""™, /=12,
...,mn, satisfying the following constraints:

Constraint C1: /; =7/- if s;=5;.

J
Constraint €2,: det/, #0, with
j\/]-/l /\/2—/2‘ lel/l;lﬂ
S /vl.fl 5 /\/2/(2 Smﬂ‘}v/ﬂﬂﬁﬂli
@ ; :
STMA STIMoSs S NS
(39)

(2) When the above condition is met, all the
solutions to the Problem ESA are given by

V:[Mﬁ NZ./Z Nmnfmn]’ (40)
and
[E) o Fm—l]

=[DA DS - Dytom)Veas (41)
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where £ e C”"™", ;=1,2,...,mn, are an arbitrary
group of parameter vectors satisfying Constraints (1
and C2,.

Theorem 4: Let system (1) be controllable, and
Ms)eR™ [s] and D(s)eR”[s] be a pair of
polynomial matrices satisfying the right factorization
(33) and condition (35). Then

(1) Problem ESA has a solution if and only if there
exist a group of parameters f,€C”, /=12, ...,mn,
satisfying Constraint 1 and

Constraint C2,: det/, #0, with

Vep =
N(Sl )/f] N(SZ ).f2 N(Smn )/:ﬂ/z
S N(‘Yl )ﬁ SZN(SZ )/5 SMﬂN(smn)/:mz
STINVSA SN S Sy V) S
(42)

(2) When the above condition is met, all the
solutions to the Problem ESA are given by

V=[Ms)A M) s M) Jon]s (43)
and
A F
[ 0 41 m—l] 1 (44)
= [D(‘Yl )ﬁ D(S2).f2 D(Smn)j:nﬂ]VcZ »

where f;e€C’, 7=1,2,...,mn, are an arbitrary group
of parameter vectors satisfying Constraints €1 and
C2;.

The proof of the above two theorems can be easily
carried out based on the discussion in Section 2 and
the results in Section 3. The only thing which needs to
be mentioned is that Constraint €1 is required because
it is a necessary and sufficient condition for the
matrices #;, 7=0,l,...,m—1, given by (41) or (44)
to be real.

Before ending this section, let us make some
remarks on the main results obtained above.

Remark 3: The above two theorems give complete
parametric solutions to the Problem ESA. The free
parameter vectors f;, 7=12,...,/mn, represent the

degrees of freedom in the eigenstructure assignment
design, and can be sought to meet certain desired
system performances. It should be noted that
Constraint (1 is not a restriction at all, it only gives a
way of selecting these design parameter vectors.
Remark 4: It follows from well-known pole
assignment result that Problem ESA has a solution
when the system (1) is controllable and the closed-
loop eigenvalues s, /=1,2,...,7n, are restricted to

be distinct. In this case, there exist parameter vectors
e, 71=1,2,...,mn, satisfying Constraint €2, or (2,

As a matter of fact, it can be reasoned that, in this case,
“almost all” parameter vectors /, ~1,2, ... ,mm, satisfy
Constraint C2, or (2, Therefore, in such applications
Constraint €2, or €2, can often be neglected.

Remark 5: The solution given in Theorem 3
utilizes only a series of singular value decompositions,
and hence is numerically very simple and reliable. As
for the solution given in Theorem 4, it has the
advantage that the closed-loop eigenvalues .,
=1,2,...,mn, can be set undetermined and used as a
part of extra design degrees of freedom to be sought
with f, 7=1,2,...,mn, by certain optimization
procedures. Furthermore, it happens that these
solutions are natural generalizations of the parametric
solutions in [17] (see also [18]) proposed for
eigenstructure assignment in second-order linear
systems, and the solution given in Theorem 4 is a
natural generalization of the parametric solution in [1]
(see also [2,3}]) proposed for eigenstructure assignment
in first-order state-space systems.

Remark 6: The eigenstructure assignment results
can be easily extended into the defective case, that is,
the case that the closed-loop system possesses a
general Jordan form (refer to Remark 2). However,
from the control systems design point of view, this is
not desired since the eigenvalues of defective matrices
are more sensitive to parameter perturbations than
those of nondefective ones.

5. ALGORITHMS AND IMPLEMENTATION

In Section 4, we have presented two complete
parametric solutions to the problem of eigenstructure
assignment in the high-order linear system (1) via the
controller (5). In this section, we further give two
algorithms for solving this problem based on these
two solutions.

5.1. Utilization of design parameters

An extreme advantage of the two solutions
provided in Section 4 to the eigenstructure assignment
problem is that they provide all the degrees of design
freedom, which are represented by the set of

parameter vectors f;e€C’, i=1,2,...,mn, With the
second parametric approach using right factorization,
the closed-loop eigenvalues s,€C, 7=1,2,...,mn,

may also be taken as a part of the design degrees of
freedom. In practical applications, these degrees of
freedom may be properly chosen to obtain a closed-
loop system with some desired specifications. The key
step in doing this is to relate a certain desired
specification to the design degrees of freedom, and
convert the specification into certain constraints on
the design parameters.

Generally speaking, such constraints can be divided
into three classes:
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* the inequality constraints, which take the form of
g(s;, fi, i=12,...,mn) 20, (45)

with g being some scalar function of s; and f;,
i=12,...,mn
« the equality constraints, which take the form of

h(s;, f, i=12,...,mn) =0, (46)

with 4 being some vector function of s; and f,
i=12,...,mn; and
« the minimization constraints, which take the form of

J(s;, f;» i=1,2,...,mn) =min, 47

with J being some positive scalar index function of
the design parameters s;and £, i=1,2,...,mn.

5.2. Algorithms

When a gystem in the form of (1) is given, and a set
of desired closed-loop eigenvalues are specified,
according to Theorem 3 we can realize the control of
the system using the following algorithm.

Algorithm A1 (Solution based on SVD):

Step 1: Solve the two series of constant matrices N;
and D;, i=1,2,...,mn, using the Algorithm P1 proposed
in Section 3.

Step 2: Find a group of parameter vectors f;, i=
1,2,...,mn, satisfying Constraints C1 and C2,
together with any additional constraints in the forms
of (45)-(47) (if exist).

Step 3: Compute, based on the parameters obtained
in Step 2, the feedback gain matrices according to (39)
and (41).

Based on Theorem 4, we can give the following
algorithm for control of the high-order linear system
(1) via the controller (5). Please note that in this
algorithm the closed-loop eigenvalues can also be
taken as a set of design parameters.

Algorithm A2 (Solution based on factorization):

Step 1: Solve a pair of polynomial matrices N(s)
and D(s) satisfying the right factorization (33) (refer
to Remark 1).

Step 2: Find a group of parameter s,, and f;,
i=1,2,...,mn, satisfying Constraints Cl1 and C2,,
together with any additional constraints in the forms
of (45)-(47) (if exist).

Step 3: Compute, based on the parameters obtained
in Step 2, the feedback gain matrices according to (42)
and (44).

5.3. Matlab implementation

The above Algorithms Al and A2 have been
implemented with Matlab 6.0. A toolbox called sfpa2
has been created, which contains three main matlab
functions, namely, sfpars2.m, sfpaga2.m, and sfpaqn2.
m. These functions minimize, in the second step of
these algorithms, the following condition number

Jo=VeallVea Vi

or Jb =“Vcb”

Such a requirement is well-known to ensure the
robustness of the closed-loop system in the sense that
the closed-loop poles are as insensitive as possible to
perturbations in the system coefficient matrices.
sfpars2.m performs the minimization by a random
search scheme, sfpaga2.m performs the minimization

using a genetic algorithm, while sfpaqn2.m performs

the minimization using a quadratic Newton method.
All the three programs have been verified via
numerous examples to be very convenient and
effective.

6. THE EXAMPLE

Consider a three-axis dynamic flight motion
simulator system shown as in Fig. 1, which possesses
a linearized model in the form of

AE + Ayi+ A%+ Agx = Bu+ f. (48)

The state vector x and the control vector u are taken as

T T

x=la B 7], uz[ul Uy u3] ,
with «, B and y being the angles of the three
directions, and u;, u, and u3; being the voltage inputs
along the three axises. The coefficient matrices and
the vector f are givenby Ay =05,3, B=1I53, and

1

3 0 0
Kma)m
4= 0 Lo |,
K,0,
0 0 KT,

Fig. 1. The there-axis dynamic flight motion simulator.
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% K
mem [(’”
2
4 = L Z 0 |
v K0,
0 0 AT
B P
-0 26
X, X, 0
K 1 K +XK K-
% % & |,
7 Lr 7 »
o 0 X 0

For the particular experimental system, the parameters
in these coefficient matrices are

K,=0741, K, =0635 K,=3.11,
7,=12x107, 7,=3.19x107, ,=215.37,
£,=00332, @, =205.62, £,=0.0794,

A =1.51x107, K, =4.80x1077,

K =212x107%, Ky =-1.78x107",

and they give
[3.724737 0 0

4=100x%| 0 2.909453 0o |
0 0 11.90508
[5085.445 -2.80315 0

4 =107 x| 6.477733  9950.55 0o |,

0 0 992090
1.5748030 0 —2.80315
4 =107 x| 203.7787 13495280 210.2564 |,
0 0 31100000
0
/=]0.0286 |.
0

For this system, it can be obtained that the set of
open-loop poles is

I'={0, 0, 0, —6.826585+205.506625;,
—17.100377 + 214.690078;,
-32.625251, —800.708083},

which includes three zero ones. The purpose of the
design is to design a feedback in the following form

u=Rx+ i+ /X,

such that the closed-loop system has the following
desired set of poles

8= -1 10, S2,3 =-30+ 251,
s, =8,,—20, 7=4,5,...,9.
Note that £ = 4.5, it follows from (38) that a pair
of M) and D(s) satisfying the right factorization
(33) can be taken as
{N(S) =13

(49)
D(s)= 45 + 4s* + 4s.

Therefore, it follows from Theorem 4 that

v=[A 5 - A

W=[D(s)fi D)f ~ Dsy)fsls
and

(% A/ 5]

=[Ds) /i D) fy o D)V, (50)
with

Voo =\ 84 S92/ = Sofy |
A B Sk
The design parameter vectors fl-e(C3, =12,...,9,

are required to satisfy Constraints €1 and (2,
Simply choosing

1 1+7/ 0
A=10|, A=A= 0|, fAi=fi=|1+7|,
0 0 0
0 1
fo=f=| 0| A=r=|1],
1+7 1
we obtain
—6.248246 23.13411 -87.97596
£ =10%x 0 —0.681903 -32.95319 |,
0 13.48622 —113.4629
127216.8 74029.15 -222925.5
E:IO‘SX 2.037787 123678.7 —83499.2 |,
0 4315591 -42283.25
| —58235.08 74026.34 —159232.5
A =107 x| 6.477733 -21326.07 —-59643.79 |.
0 4315591  620056.3

The corresponding closed-loop eigenvalues are
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—-109.999930, —30.000029 +24.999982i,
—49.999496 + 25.0002114, —70.000287 £ 24.999781i,
—90.000196 + 25.000554i, and

Iy =Vasl|Vr'| = 444890, [, F R]|=149.34.

For the same problem, using our Matlab function
sfpaga2.m, which minimizes the J, index, we obtain
the set of design parameter vectors as

11.55292
£, =1 -76.70877 |,

—24.54636
[ 62.89707 +76.0494i
fo=f3 =| —42.21224 + 41.39475i |,
| 52.69122 - 60.22392i
[19.47224 -12.88081;
-97.7156 + 97.6349i |,
| —66.1718 + 65.96142i
[-66.57559 — 74.20366i
fo = f7 =|-39.07198 +37.21365i |,
| 52.97427-81.33047i
[72.90513 + 59.60403i
5.11942 +35.4133i
| 59.11232-53.7313i

and the corresponding feedback gain matrices as

-9.124586 3.555382 -5.096869
Fy=|-1.972745 -9.191742 -2.475766 |,
14.98329 -3.684043 -27.20568
111.1872  7.294695 -11.76649
K =107% x| —3.724621 95.66864 —6.156975 |,
32.25638 —4.378725 171.8674
—-67.56116  4.78143  -8.561459
s =10* x| -1.831703 -49.69357 —5.079366 |.
2411178 -2.674033 765.9404

The corresponding closed-loop eigenvalues are
—-109.99999, —30.000009 +25.000052i,

—50.000006 + 25.00000214, —69.999885 + 24.999975i,
—90.000077 £24.999879i, and

Ty =Wl |=21776 7 A R]|=31419.

7. CONCLUSIONS

This paper treats the problem of eigenstructure
assignment in the high-order linear system (1) via

proportional plus derivative coordinate control and

has achieved the following:

* Two parametric approaches are proposed, which
provide very simple, complete parametric
expressions for the closed-loop eigenvector
matrices and the feedback gains. These expressions
contain a group of parameter vectors which
represent the design degrees of freedom and can be
properly further chosen to produce a closed-loop
system with some desired system specifications.

* The first approach mainly depends on a series of
singular value decompositions, and is thus
numerically very simple and reliable; the second
one utilizes the right factorization of the system and
also allows the closed-loop eigenvalues to be
treated as a part of the degrees of design freedom
since they appear directly in the expressions of the
eigenvector matrix and the feedback gains.

* The second approach happens to be a natural
generalization of the parametric method proposed
in [3] for eigenstructure assignment in first-order
state-space descriptor linear systems and that
proposed in [18] for eigenstructure assignment in
second-order state-space descriptor linear systems.

» The presented results are generalizations of the
parametric methods proposed in [1-3,17,18] for
eigenstructure assignment in first- and second-order
linear systems.

* Based on the presented approaches, a matlab tool-
box, sfpa2, for eigenstructure assignment in high-
order linear systems has been created, which has
been approved to be very efficient and eftective.
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