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THE PERIODIC JACOBI MATRIX PROCRUSTES PROBLEM

JIAO-FEN LI* AND XI-YAN HU

ABSTRACT. The following ” Periodic Jacobi Procrustes” problem is stud-
jed: find the Periodic Jacobi matrix X which minimizes the Frobenius (or
Euclidean) norm of AX — B, with A and B as given rectangular matrices.
The class of Procrustes problems has many application in the biological,
physical and social sciences just as in the investigation of elastic struc-
tures. The different problems are obtained varying the structure of the
matrices belonging to the feasible set. Higham has solved the orthogonal,
the symmetric and the positive definite cases. Andersson and Elfving have
studied the symmetric positive semidefinite case and the (symmetric) el-
ementwise nonnegative case. In this contribution, we extend and develop
these research, however, in a relatively simple way. Numerical difficulties
are discussed and illustrated by examples.

AMS Mathematics Subject Classification: 65F30; 65H15
Key words and phrases : Periodic Jacobi matrix; procrustes problem:;
matrix nearness problem; singular value decomposition.

1. Introduction

Let A € R™*™ be a data matrix obtained by performing a certain set of
experiments, and let B € R™*™ be another matrix obtained by performing the
same set of experiments all over again. We are interested in the solving con-
strained least-squares rectangular matrix problems. More precisely, we consider
the following constrained approximation problems:

min ||[AX — B||2
s.t (1)
XePp,

with m > n and P € R™*™ has a particular pattern. In R™*" we define inner
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product as:

m n

(A, B) =) aijby;

i=1 j=1

for all A = (ai;), B = (b;;) € R™*". The norm of a matrix A generated by this
inner product is the Frobenius norm, denoted by || A4]|.

A variety of matrix approximation problems is contained in the class (1).
With no constraints on X (P = R™*") a standard least squares problem is
obtained, having a solution X = A" B, where A7 is the Moore-Penrose inverse
of A (see, for example, [2, Ch.6]).

Replacing P by other subspaces of R™"*" yields other types of constrained
Procrustes problems. Taking for P the set of orthogonal matrices yields the
orthogonal Procrustes problem, which arises in a variety of applications, for ex-
ample in psychometrics, in multidimensional scaling and factor analysis (see, for
example [5, 6, 7, 8]). The problem is readily solved through the singular value
decomposition (SVD) of BT A: the solution is in fact the orthogonal polar factor
of BT A. Taking for P the set of symmetric matrices yields the symmetric Pro-
crustes problem. This problem arises in the investigation of elastic structures
wherein vectors f; of observed forces are postulated to be related to vectors d;
of observed displacements according to X f; = d;, where X is the symmetric
strain (or flexibility) matrix [5, 9]. Higham [3] analyzes this problem by using
SVD and gives a stable method to compute a solution. Higham also verifies that
any solution of the normal equations (a special case of the Sylvester equations)
yields a solution of the problem, and also notes that for G(= AT B 4 BT A) pos-
itive semidefinite the solution of the normal equation is also definite. If P is the
closed convex cone of symmetric positive semidefinite matrices or of symmet-
ric elementwise nonnegative matrices, the corresponding constrained Procrustes
problems reduces to problems studied by Andersson and Elfving [4].

When m =n and A = I, a special case of (1) is the matriz nearness problem

min || X — BJ?. (2)

XeP
Problem (2) arises in statistics and mathematical economics. A classical example
in statistics is the problem of finding the nearest symmetric positive definite
patterned matrix to a sample covariance matrix. Patterned covariance matrices
arise frequently from the models in physical and social sciences, see Hu and Olkin
[13]. The symmetric positive semidefinite case has analyzed by Higham [11]. And
an important nearness problem is to find the nearest normal matrix; see [10].
For more, we refer the reader to Refs [12, 14, 15, 16] and their references.

In this paper we explore the problem obtained from (1) when one imposes
what is perhaps the simplest constraint on X, that of Periodic Jacobi. We will
refer to this problem as the "Periodic Jacobi Procrustes” (PJP) problem, by
analogy with the version mentioned above, that is
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min ||AX — BJ? ‘
s.t 3)
XeT,

where 7 € R™"*™ is the subspace of Periodic Jacobi matrices.
Let us recall that a matrix T = (¢;;) is said to be a Periodic Jacobi matrix, if
it has a special symmetric structure

(21 b, bn \
1

az 52

bp—2 an_1 bn_1

\bn bn—l an )
Periodic Jacobi matrices play an important role in numerous applications in
the theory of continued fractions, Padé and Hermite-Padé approximation (see
[17, 18]). The complement of the essential spectrum of the operator associated
to any such matrix determines, except for isolated points, the region of conver-
gence of the Chebyshev continued fractions whose parameters are asymptotically
periodic and the limits coincide with the elements of the periodic Jacobi matrix.

The plan of the paper is as follows. In section 2 we analyze the PJP problem
by combining with the SVD. The general solution is derived by using the first
order necessary condition and the second order necessary condition of the mul-
tidimensional function minimization problem. A lemma is presented to verify
that the problem (3) has unique solution if the coefficient matrix A is full column
rank, which is in accordance with the Lemma 1.1 presented in [4]. The cases of
general Periodic Jacobi is analyzed in section 3, the unique solution is obtained
by assuming the coefficient matrix A is full column rank. In section 4, we give a
numerical example to show the efficiency of conclusion established in this paper.

This work extends the treatments in [3] and [4], however, in a totally differ-
ent way even if periodic jacobi matrix is a special symmetric matrix. The main
contributions being using of the SV D and using analytic methods to solve and
analyze the PJP problem. We should remark that the theory and algorithms
presented here are easily adapted to the ”Jacobi Procrustes”, ”tridiagonal Pro-
crustes”, ”five-diagonal Procrustes” problems, in which the constraint in (1) is
taken to be that of Jacobi, tridiagonal, or five-diagonal.

2. The periodic Jacobi problem

In this section we characterize the feasibility set T of (3).
Given the matrices A, B € R™*", the subspace 7 can be represented by

T ={X€R”X":X= iakaJersz},

k=1 =1
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where ay, b; € R and Gy, P, € R"*™ are matrices defined as follows
1, ifi=lj=101+1;
1<izn-1 0, otherwise.

L ifi=5=k
(Gr)ij —{ 0, otherwise.

L ifi=1j=mn
(Pn)zj: 1, ifi=n,j:1;
0, otherwise.

Clearly they form a basis for the subspace 7.
2.1 The transformed problem

We will transform the problem (3) in a simpler one. To do this transformation
let A be the matrix have the following singular value decomposition

A=P m Q" 4)
where P € R™*™ and @ € R™*", are orthogonal matrices and
Y = diag(o1,09, - ,04), where o; > 0 (1 < i < n) is the singular value of A.

Using the invariance of the Frobenius norm under orthogonal transformation
we have

: : P X
1ax - Bl =[P [5] @mx - B =1 5] @x - PR

-1l [5| @x -l = I=e")x - Gl + o
|- GillP+ [ICal?
with
C1

T=xQTX e ™", C= [02

] — PTB, Cl = Ran.

then the problem (3) is equivalent to

min ||7 — C1]|?
s.t
TeT

where 7~ is the following subspace:

T = {TERnxn:T=EQT(i arGr, + Zblpl)}
k=1 =1

2.2 Characterization of the solution on 7~

We introduce the notation Py (A) meaning the projection of the matrix A on
the set U. The following theorem characterizes the projection on the subspace
of matrices 7 .
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Theorem 1. If C1 € R"*", then the general solution of the problem (5) is

n

Pp(C) =TT (}: NERSS bsz) ,
=1

k=1
( n
> 0i(C)in@ri
o ={ TR Lok
1<k<n gai k.
\ Zrbitrary, otherwise.

i i [(C1)i1Qit1,i + (C1)i41Qu.]
i=1

Y U?(ng+1,i +Q7;) #0,
i=1

1512"—1 N i U?(QZQ-HJ + Q?z)
= arbitrary, otherwise.
Zn: i [(C1)i1@n,i + (C1)inQ1,i] L
o) T . 2 of@i+ QR #0,
" > o QR+ Q) =
= arbitrary, otherwise.

Proof. The objective function f : R>™ — R is given by
f(aab) :f{ala"'yanably”')bn—labn}
1 1
= SIT - CulP = SI2QTX - Gy

1 - -
= 512Q" (Z“’ka + szPz> - Gy
k=1 =1 '
1 <& . o
=z Z (ZQT ( arG, + szPz>> —(C1)ij
i,j=1 k=1 =1 '

= (%]
: o : : . of
Since f is twice continuously differentiable, we compute ——(a, b) for all p such

Oa,

2

that 1 <p<n

2
of _ o 1 T
i.j=1 r=1 =1 i3

n

iJg=1 k=1 =1 i
o n n
-("T (EQT (ZQA-GL- +Zb1pl>) } .
p .
k=1 =1 i.j
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The factor in the right hand side of (6) can be written as

8_3; (ch (}; akGr iblpl> > ‘
<l i)

s=1

0
(ZQT)z S Ban <Z arGy + Z bzﬂ)
W \ioh =1

i, s(Gp)s.j = (EQTGp)i,jy

8,5

and (6) becomes in

gai = z": l: (EQT <Zaka —I—szPz)) - (Cl)i,j> '(EQTGp)i,j:l :
. | ™)

i,j=1 k=1 =1

Having in mind that

(ZQT (Z arGy, + Z blPl>)
k=1 =1 i.j

is the inner product between the it" row of (ZQT) and the j** column of

(Z a, G + z blPl), we obtain

k=1 =

<EQT <§ G+ 3 bng))
k=1 I=1 i
0i(a1Q1,i + b1Q2,i + bnQn.i) J=1 (8)
=19 0i(bj—1Qj-1i+a;Q;i +b;Qj+1:)  jF#1and j#mn;
0i(bnQ1.i +bn1Qn—1+ anQn:) j=n

Similarly, the element (2QTG)); ;, is the inner product between the i*" row
of £QT and the j** column of G,. Then

£Q7Gys = { (O I

So (7) becomes in

860]: = Z ai <2QT (Z arG. + Z bIPl>> : sz - Zai(Cl)q-_pr.i.
’ k=1 =1

i=1 ip i=1 9)
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And together with (8), the first sum item in the right hand side of (9) can be
written as

k=1 =1

’ n

Y 0H(a1Q1. + b1Q2.i + b,Qn.i) Q1.4 P = 1

: | o)
=< > U?(bp—lQp-—l,i + aprp.i + prp+1,i)Qp,iyp # 1, and p # n;

o~
[sy

3
—

n

Y 02 (bn Q1.+ bn—1Qn—1:+ anQn.i)Qn.i,p = n;

\ =1

Defining Z(Qh’ng’i)O'? =179, with

=1

T . 2 2 2N\T
ve = (thngJ-’ Qh,2Qg,2, ce 7Qh,an,n)7 0= (017027 Tt 7an) 3

we have that the sum of all the components of v is the inner product between two
columns of the orthogonal matrix ) and then it is zero when h # g. Therefore
for h # g we have

0= (im) o2 <vlh = anz/iaf < (iuz) o] =0,
i=1 i=1 i=1

o
then 70 = 0 for all m # n and v70 = Y ¢2Q? , for m = n. So (10) becomes

m,i
i=1
in
n n n n
Z 0 (ZQT (Z arGh, +Zblpl)) Qpi| = Zo’?apQ;i,
i=1 k=1 =1 i,p i=1
forall p=1,---,n. Then (9) becomes of = zn:oza Q2. — ia-(C’l)' Qp.i
y ) aap — 1P P, — ? L,pp,t:
Therefore, from the first order necessary condition Fa. 0, p=1,---,n,we
a
obtain g
n
Z Ui(cl)i,pr,z’
ay = =+ — (11)
; i %p.i

Now we observe that the denominator of (11), it is non zero when rank(A) = n,

n
for all singular value of A are positive, then Y~ 67Q2 ;

i=1

(@p.1,@p2, ,Qp.n] =0, which is contradicted with @ is orthogonal. But it is
possible to be zero if rank(A) = k < n, it just let the first k elements of the p"

= 0 implies 0;Q)p,; = 0 =
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of Q are all zeros and the rest elements.at least have one non-zero element. So
we must consider the case of the denominator of (11) is zero, we let a; to be

n
arbitrary if ) 07Q2; = 0.
i=1 '
. of
Similar as ——, we compute —— for all 1 < ¢ < n, we have

Oap 0b,

g_bi — Z (ZQT (Zakak+zbzﬂ>> = (C1)i;
q k=1 =1

It & (12)
a n n
(5o (s Eom)
q k=1 =1 i,j

We also have 6% (ZQT {Z ar G +Zb1PL\\ = (2QTP,) ;, and expres-

7\ \k:l =1 //i,j
sion (ZQT (Z arGr + >, blPl)) as in (8).

k=1 =1 ij

So, (12) becomes in

aan = Z <ZQT (Z aka + Z blH) ) . (EQTPq)z,j
7 =1 k=1 =1 i
— 3 (C1)i;(ZQT Py)i ;. (13)

i,7=1

Noting that, the element (XQT P,); ;, is the inner product between the it" row
of 2QT and the j** column of j of P,. Then

0iQqv14 I =G
(2QTP,)ij =14 0:Qqi, j=q+1; for 1<qg<n-1, (14)
0, else. .

In particular when g = n

- UiQn,’h .7 = 13
(32Q" Ppn)ij =< 0iQ1,, Jj=n; (15)
0, else.

When j = g and 1 < ¢ < n—1, combining with (8) and (14), the first sum item
in the right hand side of (13) can be written as

> [(EQT (i anGr+ 3 b,ng)). {(SQTP,)ig
i

i=1 k=1 (=1
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1
Z 07 (a1 Q1.+ 61Q2.i + bnQn.i)Q2.4, g=1
—1
n
Z G;(bq—qu——l.i +aqQqi +bgQqt1.4)Qg+14, 1<g<n-—-1

(16)

n

=)0 zquqH” forall1<g<n-1.

[y

~.

When j=¢g+land 1 <g<n—-1

> {(EQT (2 arGi + z sz))ﬂ R (ZQTPQ)MH:}

i=1 k=1

> 07 (0gQq,i + ag+1Qq+1.i +bg41Qg+2.4)Qqi, 1< g<n—1
=q ‘@ (17)
Z O-iz(anl,i + bn—lQn—l,i + anQn,i)Qn—-l,z’a g=n-— 1.

= Zozquql, foralll1<g<n-1.

And the second sum item

n

Z (C1)if(EQT Py)ij = Zo'i(cl)i,qu—i—l,i + Zgi(cl)i,q+1Qq,i-
i=1 i=1

ij=1
Therefore, (13) becomes

of
8b,

i q+1z+ 2025 Q (i i(C1)i,gQq+1,: + ZUZ(CI)Z g+1Qq, l) )

forall g =1,---,n— 1. Therefore, from the first order necessary condition
0
8_;; =0, ¢g=1,---,n—1, we obtain

i i [(C1)1,qQq+1,i + (C1)iq+1Qq.i]
by = = : (18)
Z 2(C\?q—f—l i + Q )

i=1

Similarly, the denominator of (18) is non zero if rank(A) = n, but it is possible
to be zero if rank(A) = k < n, it just let the first k elements of the ¢! row
and (g + 1) row of Q are all zeros, and the rest elements of the two row each
have at least one non-zero element. So we define b; to be arbitrary if the the
denominator is zero.

Especially, when p = n, combining with (8) and (15), the first sum item in
the right hand side of (13) can be written as
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o)
-]
[0 4

i [Uz' (EQT (i arGr + zn: bzpz)) 'Qn.i:|
i=1 k=1 =1 il
+y

=1

T <ZQT (i arGr + g:l blpl)) ‘ 'Ql.z}

k=1

03 (a1Q1. +b1Q2.i + b,Qn i) Qn.i
__f:l 07 (bnQ1: + bn-1Qn—1.+ anQn.i)Q1.
? n(@1+Q2)).

,,
I
=

I

[l
ITM:S

And the second sum item

Z (Cl)% J(ZQTP )23 = 201(01)3 lQn i+ Zae(cl i, an i

1,5=1

Therefore, when ¢ = n (13) becomes

of o . -
5% => oo (QF+Q2,) - (; 0i(C1)i1@n,i + ;Gi(cl)i,nQLi) :

i=1

: 0
Therefore, from the first order necessary condition % = (), we obtain

i [(Cl 1, lQn it (Cl)z an z]
b, = =, : (19)
2 o} Q7+ Q%))

Similarly, the denominator of (19) is non zero if rank(A) = n, and we let b}, be
arbitrary if the denominator is zero.

Now, we need to verify that a;(1 < p < n), bl < g<n-1),0b}isa
minimizer of f . We compute

62 62
3;20 Z 'p T = 7 abz Z q+1 i = 8b£ Z 2(Q i,g) Z 0,

it is easy to verify that the above three inequalities can not be 0 simultaneously
for @ is orthogonal, especially, the strict inequality are hold when rank(A) = n,
and we also have

0% f _ ) 0% f _ . .

daar =0, if k#p, .5 =0, if l#g;

azf B 62f B aZf _ 82f B 82f _ aZf
dayb, 0 dayb, 0 Obga, 0 Obgb, 0 Obna, 0 b b, =0
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It implies that the Hessian matrix 572 f(a*, b*) is positive semidefinite, especially,
it is positive definite when rank(A) = n, therefore a,(1 < p < n), b;(1 < g <
n — 1), b}, is the minimizer of f . , O

Noting that from Theorem 1, the coefficients ay, by, b}, are only dependent
on the three factors P X and @ in the singular value decomposition of A. But
unlike the diagonal factor X, the left and the right orthogonal factors P, and
Q are never uniquely determined, the degree of nonuniqueness depends on the
multiplicities of the singular values. Similar as Theorem 3.11" in [1], we can
characterize the set of all possible left and right orthogonal factors in a singular
value decomposition as follows:

Lemma 1. Let A € R™*™ be given, suppose that the distinct nonzero singular
values of A are oy > -+ > o, > 0, with respective multiplicities p1,- -+ , pr 2> 1.
Let py + -+ p = r and let A = Pdiag(Z,0m—rn—r)Q be a given singular
value decomposition with ¥ = diag(o11,,, -+ ,0%l..) € R™*". Let P ¢ Rmxm
and Q) € R™ " be given orthogonal matrices. Then A = PEWT if and only if
there are orthogonal matrices U; € RF¥H 4 =1,--- K, V € R(m=r)x(m=-r)
and W € R(n=1X(n=1) gych that

P=PlU,® - -0U,®V] and Q=QU,®---&Ur®W]. (20)

In the next, together with lemma 1, we will prove that the uniqueness of
the solution of Problem (3) when the coefficient matrix A is full column rank,
and the solution is not unique if rank(A) < n, further, it is associated with
the matrices V and W which were characterized in lemma 1. We first have the
following well-known result

Lemma 2. Let H be the linear space of real matrices with a fized dimension and
C be a closed convexr and nonempty cone in H. Assume that f is conver and
coercivel. Then Problem }(nelg f(X) has a solution. If in addition f is strictly

convez, the solution is unique.

Suppose that the coefficient matrix A is full column rank and has another
form of singular value decomposition A = P li?] Q, where

U, Us
P=P E and Q=Q .

Uy ' U

“7 k

1On H we introduce the inner product (X,Y) = trace(XYT), X, Y € H. The function
f is called coercive on C if

min f(X) = co.
X ||—oc,XEC
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Partitioning P = [Py, P»], P = [P, P,], where P, € R™*", P, € R™*", then
U,
P =P
Uy

Then by Theorem 1, we can obtain another solution a,(1 < p < n), b;(l <

g < n—1) and b, which are associated with matrices Q and Ci(= PTB),
the concrete expressions are similar as (11), (18), (19). But by straightforward
computations, we have

T

z 0iQ,i(C1)in
= Uz Ul Bi,n
= [01Qr1, + ,0nQf.n] Pl
| Uk - UF Bun
= _Xn:laiQf,i(Cl)i,h
3 025,
- Ur uf 01Qf1
= [01Qs1,7++ 00 Q0] 3 s
Uk ; UIE:F onQfn

3

Z 2sz

Therefore, it is easy to see that aj, = a,(1 < p < n), 52‘1 =by(l <¢g<mn-1)and
13; = by, which implies that when matrix A is full column rank, the solution of
(3) is unique, which is in accordance with the lemma 2. We also know from the
above discussion that if rank(A) < n, then the solutions are associated with the
matrices V and W defined by (20), which implies the solution is not unlque |

3. A numerical algorlthm for solving problem (3)

Based on Theorem 1, we can establish an algorithm for finding the solution
X of problem (3). To this end, we let A, B € R™*" (m > n). The following
algorithm computes the solution X of problem (3).

Algorithm 1. :

Input: A, B€ R™" (m > n).

Output: X.

Begin:

Step 1:  Find the SVD of the matrix A by (4) and then partition matrix

P =[Py, P], P, € R™*", determine the matrix C; = P{ B.
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Step 2:  Compute ay(1 < p <n), b;(1 < g < n) by Theorem 1.
Step 3:  Compute the solution X of problem (3). If rank(A) = n, the solution

is the unique solution of the problem.

End

In the following, we will give a numerical example with coefficient matrices
to verify our algorithm. All the tests are performed using MATLAB 7.0 which
has a machine precision 1072, Above all, we consider a general example.

Example Let matrices

[-41 49 43 62 68 05 15 89
30 21 93 37 09 -36 —-67 2.7
87 64 68 57 03 —63 —-69 25
01 32 21 45 61 -71 72 —86
A=|-76 -96 83 04 -60 69 47 -23],
97 72 62 02 01 08 -55 —80
99 -—41 -13 -31 01 45 1.2 90
78 —74 -21 0 1.9 44 —45 23
\-43 -26 62 38 58 35 71 23 )

104 0.67 249 356 221 171 159 157\
064 080 2.80 300 002 -1.36 -1.38 0.11
1.07 104 299 285 —028 —1.97 ~1.83 0.89
~1.25 040 158 256 023 112 —087 —0.88
—0.97 —032 114 081 058 056 154 —0.98
~1.88 095 1.76 1.37 021 —0.63 —2.02 -3.98
206 —037 —1.18 -1.00 042 093 212 3.64
088 —0.71 —0.90 —0.11 121 047 011 104/

where rank(A) = 8 (full column rank). Compute the SVD of A, we obtain the
singular values of A as follow

(25.6126, 24.2777, 19.2189, 16.4819, 12.6274, 7.5266, 4.5672, 2.3510).

Then by using Algorithm 1, we obtain the unique solution of problem (3) is

0.1386  —0.0243 0 0 0 0 0 0.1982
—-0.0243 0.1213  0.0426 0 0 0 0 0
0 0.0426  0.1777 0.1256 0 0 0 0
¥ = 0 0 0.1256 0.2238 0.1458 0 0 0
0 0 0 0.1458 0.2186 0.1452 0 0
0 0 0 0 0.1452 0.2089 0.1588 0

0 0 0 0 0 0.1588 0.2073 0.1495

0.1982 0 0 0 0 0 0.1495 0.2201

By concrete computations, we can further get | AX — B|| = 2.9358.
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