• 제목/요약/키워드: silicon fabrication

검색결과 1,119건 처리시간 0.05초

저온공정 실리콘 산화막의 질소 패시베이션 효과 (Passivation of Silicon Oxide Film Deposited at Low Temperature by Annealing in Nitrogen Ambient)

  • 김준식;정호균;최병덕;이기용;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제19권4호
    • /
    • pp.334-338
    • /
    • 2006
  • Poly silicon TFT requires high quality dielectric film; conventional method of growing silicon dioxide needs highly hazardous chemicals such as silane. We have grown high quality dielectric film of silicon dioxide using non-hazardous chemical such as TFOS and ozone as reaction gases by APCVD. The films grown were characterized through C-V curves of MOS structures. Conventional APCVD requires high temperature processing where as in the process of current study, we developed a low temperature process. Interface trap density was substantially decreased in the silicon surface coated with the silicon dioxide film after annealing in nitrogen ambient. The interface with such low trap density could be used for poly silicon TFT fabrication with cheaper cost and potentially less hazards.

Evaluation of 1/f Noise Characteristics for Si-Based Infrared Detection Materials

  • Ryu, Ho-Jun;Kwon, Se-In;Cheon, Sang-Hoon;Cho, Seong-Mok;Yang, Woo-Seok;Choi, Chang-Auck
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.703-708
    • /
    • 2009
  • Silicon antimony films are studied as resistors for uncooled microbolometers. We present the fabrication of silicon films and their alloy films using sputtering and plasma-enhanced chemical vapor deposition. The sputtered silicon antimony films show a low 1/f noise level compared to plasma-enhanced chemical vapor deposition (PECVD)-deposited amorphous silicon due to their very fine nanostructure. Material parameter K is controlled using the sputtering conditions to obtain a low 1/f noise. The calculation for specific detectivity assuming similar properties of silicon antimony and PECVD amorphous silicon shows that silicon antimony film demonstrates an outstanding value compared with PECVD Si film.

실리콘 웨이퍼 습식 식각장치 설계 및 공정개발 (Design of Single-wafer Wet Etching Bath for Silicon Wafer Etching)

  • 김재환;이용일;홍상진
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.77-81
    • /
    • 2020
  • Silicon wafer etching in micro electro mechanical systems (MEMS) fabrication is challenging to form 3-D structures. Well known Si-wet etch of silicon employs potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH). However, the existing silicon wet etching process has a fatal disadvantage that etching of the back side of the wafer is hard to avoid. In this study, a wet etching bath for 150 mm wafers was designed to prevent back-side etching of silicon wafer, and we demonstrated the optimized process recipe to have anisotropic wet etching of silicon wafer without any damage on the backside. We also presented the design of wet bath for 300 mm wafer processing as a promising process development.

Neural Interface with a Silicon Neural Probe in the Advancement of Microtechnology

  • Oh, Seung-Jae;Song, Jong-Keun;Kim, Sung-June
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권4호
    • /
    • pp.252-256
    • /
    • 2003
  • In this paper we describe the status of a silicon-based microelectrode for neural recording and an advanced neural interface. We have developed a silicon neural probe, using a combination of plasma and wet etching techniques. This process enables the probe thickness to be controlled precisely. To enhance the CMOS compatibility in the fabrication process, we investigated the feasibility of the site material of the doped polycrystalline silicon with small grains of around 50 nm in size. This silicon electrode demonstrated a favorable performance with respect to impedance spectra, surface topography and acute neural recording. These results showed that the silicon neural probe can be used as an advanced microelectrode for neurological applications.

Fabrication of Metal-Semiconductor Interface in Porous Silicon and Its Photoelectrochemical Hydrogen Production

  • Oh, Il-Whan;Kye, Joo-Hong;Hwang, Seong-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4392-4396
    • /
    • 2011
  • Porous silicon with a complex network of nanopores is utilized for photoelectrochemical energy conversion. A novel electroless Pt deposition onto porous silicon is investigated in the context of photoelectrochemical hydrogen generation. The electroless Pt deposition is shown to improve the characteristics of the PS photoelectrode toward photoelectrochemical $H^+$ reduction, though excessive Pt deposition leads to decrease of photocurrent. Furthermore, it is found that a thin layer (< 10 ${\mu}m$) of porous silicon can serve as anti-reflection layer for the underlying Si substrate, improving photocurrent by reducing photon reflection at the Si/liquid interface. However, as the thickness of the porous silicon increases, the surface recombination on the dramatically increased interface area of the porous silicon begins to dominate, diminishing the photocurrent.

Fabrication and Characterization of DBR Porous Silicon Chip for the Detection of Chemical Nerve Agents

  • 정경선
    • 통합자연과학논문집
    • /
    • 제3권4호
    • /
    • pp.237-240
    • /
    • 2010
  • Recently, number of studies for porous silicon have been investigated by many researchers. Multistructured porous silicon (PSi), distributed Bragg reflector (DBR) PSi, has been a topic of interest, because of its unique optical properties. DBR PSi were prepared by an electrochemical etch of $P^{{+}{+}}$-type silicon wafer of resistivity between 0.1 $m{\Omega}cm$ with square wave current density, resulting two different refractive indices. In this work, We have fabricated a simple and portable organic vapor-sensing device based on DBR porous silicon and investigated the optical characteristics of DBR porous silicon. DBR porous silicon have been characterized by FT-IR, Ocean optics 2000 spectrometer. The device used DBR PSi chip has been demonstrated as an excellent gas sensor, showing a great senstivity to a toxic vapor (TEP, DMMP, DEEP) at room temperature.

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제7권1호
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.