• Title/Summary/Keyword: sigma-delta (${\Sigma}{\Delta}$) modulator

Search Result 148, Processing Time 0.026 seconds

Design of 5.0GHz Wide Band RF Frequency Synthesizer for USN Sensor Nodes (USN 센서노드용 50GHz 광대역 RF 주파수합성기의 설계)

  • Kang, Ho-Yong;Kim, Nae-Soo;Chai, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.87-93
    • /
    • 2008
  • This paper describes implementation of the 5.0GHz RF frequency synthesizer with $0.18{\mu}m$ silicon CMOS technology being used as an application of the IEEE802.15.4 USN sensor node transceiver modules. To get good performance of speed and noise, design of the each module like VCO, prescaler, 1/N divider, fractional divider with ${\Sigma}-{\Delta}$ modulator, and common circuits of the PLL has been optimized. Especially to get good performance of speed, power consumption, and wide tuning range, N-P MOS core structure has been used in design of the VCO. The chip area including pads for testing is $1.1*0.7mm^2$, and the chip area only core for IP in SoC is $1.0*0.4mm^2$. Through comparing and analysing of the designed two kind of the frequency synthesizer, we can conclude that if we improve a litter characteristics there is no problem to use their as IPs.

2nd-Order 3-Bit Delta-Sigma Modulator For Zero-IF Receivers using DWA algorithm (DWA알고리즘을 적용한 Zero-IF 수신기용 2차 3비트 델타-시그마 변조기)

  • Kim, Hui-Jun;Lee, Seung-Jin;Choe, Chi-Yeong;Choe, Pyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.75-78
    • /
    • 2003
  • In this paper, a second-order 3-bit DSM using DWA(Data Weighted Averaging) algorithm is designed for bluetooth Zero-IF Receiver. The designed circuit has two integrators using a designed OTA, nonoverlapping two-phase clerk generator, 3-bit A/D converter, DWA algorithm and 3-bit D/A converter An ideal model of second-order lowpass DSM with a 3-bit quantizer was configured by using MATLAB, and each coefficients and design specification of each blocks were determined to have 10-bit resolution in 1MHz channel bandwidth. The designed second-order 3-blt lowpass DSM has maximum SNR of 74dB and power consumption is 50mW at 3.3V.

  • PDF

A Study on the Wide-band Fast-Locking Digital PLL Design (광대역 고속 디지털 PLL의 설계에 대한 연구)

  • Ahn, Tae-Won
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents the digital PLL architecture and design for improving the frequency detection range and locking time for wide-band frequency synthesizer applications. In this research, a wide-range digital logic quadricorrelator is used for wide-band and fast frequency detector and sigma-delta modulator with 2-bit up-down counter is adopted for DCO control. The proposed digital PLL reduces the phase noise from quantization effect and is suitable for implementation of wide-band fast-locking as well as low power features, which is in high demand for mobile multimedia applications.

Multi-Channel Audio CODEC with Channel Interference Suppression

  • Choi, Moo-Yeol;Lee, Sung-No;Lee, Myung-Jin;Lee, Yong-Hee;Park, Ho-Jin;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.608-614
    • /
    • 2015
  • A multi-channel audio CODEC with inter-channel interference suppression is proposed, in which channel switching noise-referred sampling error is significantly reduced. It also supports a coarse/fine mode operation for fast frequency tracking with good harmonic performance. The proposed multi-channel audio CODEC was designed in a 65 nm CMOS process. Measured results indicated that SNR and SNDR of ADC were 93 dB and 84dB, respectively, with SNDR improved by 43 dB. Those of DAC were 96 dB and 87 dB, respectively, with SNDR improved by 45 dB when all the channels are running independently.

Switched-Capacitor Based Digital Temperature Sensor Implemented in 0.35-µm CMOS Process

  • Kim, Su-Bin;Choi, Jeon-Woong;Lee, Tae-Gyu;Lee, Ki-Ppeum;Jeong, Hang-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.21-24
    • /
    • 2018
  • A temperature sensor with a binary output was implemented using switched-capacitor circuits in a $0.35-{\mu}m$ CMOS(com-plementary metal-oxide semiconductor) process. The measured temperature exhibited good agreement with the oven temperature after calibration. The measured power consumption was 5.61 mW, slightly lower than the simulated power consumption of 6.63 mW.

Low-Voltage Current-Sensing CMOS Interface Circuit for Piezo-Resistive Pressure Sensor

  • Thanachayanont, Apinunt;Sangtong, Suttisak
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • A new low-voltage CMOS interface circuit with digital output for piezo-resistive transducer is proposed. An input current sensing configuration is used to detect change in piezo-resistance due to applied pressure and to allow low-voltage circuit operation. A simple 1-bit first-order delta-sigma modulator is used to produce an output digital bitstream. The proposed interface circuit is realized in a 0.35 ${\mu}m$ CMOS technology and draws less than 200 ${\mu}A$ from a single 1.5 V power supply voltage. Simulation results show that the circuit can achieve an equivalent output resolution of 9.67 bits with less than 0.23% non-linearity error.

  • PDF

Digital Controller Candidate for Point-of-load Synchronous Buck Converter in Tri-mode Mechanism

  • Xiu, Li-Mei;Zhang, Wei-Ping;Li, Bo;Liu, Yuan-Sheng
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.796-805
    • /
    • 2014
  • A digital controller with a low-power approach for point-of-load synchronous buck converters is discussed and compared with its analog counterpart to confirm its feasibility for system integration. The tri-mode digital controller IC in $0.35{\mu}m$ CMOS process is presented to demonstrate solutions that include a PID, quarter PID, and robust RST compensators. These compensators address the steady-state, stand-by, and transient modes according to the system operating point. An idle-tone free condition for ${\Sigma}-{\Delta}$ DPWM reduces the inherent tone noise under DC-excitation. Compared with that of the traditional approach, this condition generates a quasi-pure modulation signal. Experimental results verify the closed-loop performances and confirm the power-saving mechanism of the proposed controller.

Sigma-Delta Modulator for Automotive Radar Systems (차량 레이더 시스템용 시그마-델타 변조기)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.818-821
    • /
    • 2010
  • 본 논문에서는 차량 레이더 시스템용 시그마-델타 변조기를 제안한다. 개발된 변조기는 차량 레이더 시스템에서 고주파 대역 신호의 고해상도 데이터 변환, 즉 아날로그-디지털변환을 수행하는데 사용되며 저전압 및 저 왜곡 특성을 가진 몸체효과 보상형 스위치 구조로 구현되어 있다. 제안된 변조기는 0.25 마이크론 이중 폴리 3-금속 표준 CMOS 공정으로 제작되었고, $1.9{\times}1.5mm^2$의 다이 면적을 점유한다. 제안된 회로는 2.7V의 동작 전압에서 기존의 부트스트랩형 회로보다 약 20dB 향상된 우수한 총 고조파 왜곡 특성을 보였다.

  • PDF

Design of CMOS Fractional-N Frequency Synthesizer for Bluetooth system (Bluetooth용 CMOS Fractional-N 주파수 합성기의 설계)

  • Lee, Sang-Jin;Lee, Ju-Sang;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.890-893
    • /
    • 2003
  • In this paper, we have designed the fractional-N frequency synthesizer for bluetooth system using 0.35-um CMOS technology and 3.3-V single power supply. The designed synthesizer consist of phase-frequency detector (PFD), charge pump, loop filter, voltage controlled oscillator (VCO), frequency divider, and sigma-delta modulator. A dead zone free PFD is used and a modified charge pump having active cascode transistors is used. A Multi-modulus prescaler having CML D flip-flop is used and VCO having a tuning range from 746 MHz to 2.632 GHz at 3.3 V power supply is used. Total power dissipation is 32 mW and phase noise is -118 dBc/Hz at 1 MHz offset.

  • PDF

A Design of Wideband Frequency Synthesizer for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.40-49
    • /
    • 2008
  • A Frequency synthesizer for mobile-DTV applications is implemented using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors are chosen for VCO core to reduce phase noise. The measurement result of VCO frequency range is 800MHz-1.67GHz using switchable inductors, capacitors and varactors. We use varactor bias technique for the improvement of VCO gain linearity, and the number of varactor biasing are minimized as two. VCO gain deterioration is also improved by using the varactor switching technique. The VCO gain and interval of VCO gain are maintained as low and improved using the VCO frequency calibration block. The sigma-delta modulator for fractional divider is designed by the co-simualtion method for accuracy and efficiency improvement. The VCO, PFD, CP and LF are verified by Cadence Spectre, and the sigma-delta modulator is simulated using Matlab Simulink, ModelSim and HSPICE. The power consumption of the frequency synthesizer is 18mW, and the VCO has 52.1% tuning range according to the VCO maximum output frequency. The VCO phase noise is lower than -100dBc/Hz at 1MHz at 1MHz offset for 1GHz, 1.5GHz, and 2GHz output frequencies.