• Title/Summary/Keyword: short channel effects (SCEs)

Search Result 26, Processing Time 0.022 seconds

Non-Overlapped Single/Double Gate SOI/GOI MOSFET for Enhanced Short Channel Immunity

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.136-147
    • /
    • 2009
  • In this paper we analyze the influence of source/drain (S/D) extension region design for minimizing short channel effects (SCEs) in 25 nm gate length single and double gate Silicon-on-Insulator (SOI) and Germanium-on-Insulator (GOI) MOSFETs. A design methodology, by evaluatingm the ratio of the effective channel length to the natural length for the different devices (single or double gate FETs) and technology (SOI or GOI), is proposed to minimize short channel effects (SCEs). The optimization of non-overlapped gate-source/drain i.e. underlap channel architecture is extremely useful to limit the degradation in SCEs caused by the high permittivity channel materials like Germanium as compared to that exhibited in Silicon based devices. Subthreshold slope and Drain Induced Barrier Lowering results show that steeper S/D gradients along with wider spacer regions are needed to suppress SCEs in GOI single/double gate devices as compared to Silicon based MOSFETs. A design criterion is developed to evaluate the minimum spacer width associated with underlap channel design to limit SCEs in SOI/GOI MOSFETs.

A Study of SCEs and Analog FOMs in GS-DG-MOSFET with Lateral Asymmetric Channel Doping

  • Sahu, P.K.;Mohapatra, S.K.;Pradhan, K.P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.647-654
    • /
    • 2013
  • The design and analysis of analog circuit application on CMOS technology are a challenge in deep sub-micrometer process. This paper is a study on the performance value of Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with Gate Stack and the channel engineering Single Halo (SH), Double Halo (DH). Four different structures have been analysed keeping channel length constant. The short channel parameters and different sub-threshold analog figures of merit (FOMs) are analysed. This work extensively provides the device structures which may be applicable for high speed switching and low power consumption application.

Analysis on DIBL of DGMOSFET for Device Parameters

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.738-742
    • /
    • 2011
  • This paper has studied drain induced barrier lowering(DIBL) for Double Gate MOSFET(DGMOSFET) using analytical potential model. Two dimensional analytical potential model has been presented for symmetrical DGMOSFETs with process parameters. DIBL is very important short channel effects(SCEs) for nano structures since drain voltage has influenced on source potential distribution due to reduction of channel length. DIBL has to be small with decrease of channel length, but it increases with decrease of channel length due to SCEs. This potential model is used to obtain the change of DIBL for DGMOSFET correlated to channel doping profiles. Also device parameters including channel length, channel thickness, gate oxide thickness and doping intensity have been used to analyze DIBL.

Optimizing Effective Channel Length to Minimize Short Channel Effects in Sub-50 nm Single/Double Gate SOI MOSFETs

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.170-177
    • /
    • 2008
  • In the present work a methodology to minimize short channel effects (SCEs) by modulating the effective channel length is proposed to design 25 nm single and double gate-source/drain underlap MOSFETs. The analysis is based on the evaluation of the ratio of effective channel length to natural/ characteristic length. Our results show that for this ratio to be greater than 2, steeper source/drain doping gradients along with wider source/drain roll-off widths will be required for both devices. In order to enhance short channel immunity, the ratio of source/drain roll-off width to lateral straggle should be greater than 2 for a wide range of source/drain doping gradients.

Analysis of Threshold Voltage Roll-off for Ratio of Channel Length and Thickness in DGMOSFET (DGMOSFET에서 채널길이와 두께 비에 따른 문턱전압변화분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2305-2309
    • /
    • 2010
  • In this paper, the variations of threshold voltage characteristics for ratio of channel length and thickness have been alanyzed for DG(Double Gate)MOSFET having top gate and bottom gate. Since the DGMOSFET has two gates, it has advantages that contollability of gate for current is nearly twice and SCE(Short Channel Effects) shrinks in nano devices. The channel length and thickness in MOSFET determines device size and extensively influences on SCEs. The threshold voltage roll-off, one of the SCEs, is large with decreasing channel length. The threshold voltage roll-off and drain induced barrier lowing have been analyzed with various ratio of channel length and thickness for DGMOSFET in this study.

Analysis of Threshold Voltage Roll-off for Ratio of Channel Length and Thickness in DGMOSFET (DGMOSFET에서 채널길이와 두께 비에 따른 문턱전압변화분석)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.765-767
    • /
    • 2010
  • In this paper, the variations of threshold voltage characteristics for ratio of channel length and thickness have been alanyzed for DG(Double Gate)MOSFET having top gate and bottom gate. Since the DGMOSFET has two gates, it has advantages that contollability of gate for current is nearly twice and SCE(Short Channel Effects) shrinks in nano devices. The channel length and thickness in MOSFET determines device size and extensively influences on SCEs. The threshold voltage roll-off, one of the SCEs, is large with decreasing channel length. The threshold voltage roll-off has been analyzed with various ratio of channel length and thickness for DGMOSFET in this study.

  • PDF

Analysis of Doping Profile Dependent Threshold Voltage for DGMOSFET Using Gaussian Function

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.310-314
    • /
    • 2011
  • This paper has presented doping profile dependent threshold voltage for DGMOSFET using analytical transport model based on Gaussian function. Two dimensional analytical transport model has been derived from Poisson's equation for symmetrical Double Gate MOSFETs(DGMOSFETs). Threshold voltage roll-off is very important short channel effects(SCEs) for nano structures since it determines turn on/off of MOSFETs. Threshold voltage has to be constant with decrease of channel length, but it shows roll-off due to SCEs. This analytical transport model is used to obtain the dependence of threshold voltage on channel doping profile for DGMOSFET profiles. Also we have analyzed threshold voltage for structure of channel such as channel length and gate oxide thickness.

Analysis of Quantum Effects Concerning Ultra-thin Gate-all-around Nanowire FET for Sub 14nm Technology

  • Lee, Han-Gyeol;Kim, Seong-Yeon;Park, Jae-Hyeok
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.357-364
    • /
    • 2015
  • In this work, we investigate the quantum effects exhibited from ultra-thin GAA(gate-all-around) Nanowire FETs for Sub 14nm Technology. We face designing challenges particularly short channel effects (SCE). However traditional MOSFET SCE models become invalid due to unexpected quantum effects. In this paper, we investigated various performance factors of the GAA Nanowire FET structure, which is promising future device. We observe a variety of quantum effects that are not seen when large scale. Such are source drain tunneling due to short channel lengths, drastic threshold voltage increase caused by quantum confinement for small channel area, leakage current through thin gate oxide by tunneling, induced source barrier lowering by fringing field from drain enhanced by high k dielectric, and lastly the I-V characteristic dependence on channel materials and transport orientations owing to quantum confinement and valley splitting. Understanding these quantum phenomena will guide to reducing SCEs for future sub 14nm devices.

  • PDF

An Analytical Modeling of Threshold Voltage and Subthreshold Swing on Dual Material Surrounding Gate Nanoscale MOSFETs for High Speed Wireless Communication

  • Balamurugan, N.B.;Sankaranarayanan, K.;Amutha, P.;John, M. Fathima
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • A new two dimensional (2-D) analytical model for the Threshold Voltage on dual material surrounding gate (DMSG) MOSFETs is presented in this paper. The parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions. The simple and accurate analytical expression for the threshold voltage and sub-threshold swing is derived. It is seen that short channel effects (SCEs) in this structure is suppressed because of the perceivable step in the surface potential which screens the drain potential. We demonstrate that the proposed model exhibits significantly reduced SCEs, thus make it a more reliable device configuration for high speed wireless communication than the conventional single material surrounding gate (SMSG) MOSFETs.

Analytical Modeling and Simulation for Dual Metal Gate Stack Architecture (DMGSA) Cylindrical/Surrounded Gate MOSFET

  • Ghosh, Pujarini;Haldar, Subhasis;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.458-466
    • /
    • 2012
  • A Dual metal gate stack cylindrical/ surrounded gate MOSFET (DMGSA CGT/SGT MOSFET) has been proposed and an analytical model has been developed to examine the impact of this structure in suppressing short channel effects and in enhancing the device performance. It is demonstrated that incorporation of gate stack along with dual metal gate architecture results in improvement in short channel immunity. It is also examined that for DMGSA CGT/SGT the minimum surface potential in the channel reduces, resulting increase in electron velocity and thereby improving the carrier transport efficiency. Furthermore, the device has been analyzed at different bias point for both single material gate stack architecture (SMGSA) and dual material gate stack architecture (DMGSA) and found that DMGSA has superior characteristics as compared to SMGSA devices. The analytical results obtained from the proposed model agree well with the simulated results obtained from 3D ATLAS Device simulator.