• 제목/요약/키워드: shell element

Search Result 1,109, Processing Time 0.024 seconds

Benchmark tests of MITC triangular shell elements

  • Jun, Hyungmin;Mukai, Paul;Kim, San
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.17-38
    • /
    • 2018
  • In this paper, we compare and assess the performance of the standard 3- and 6-node MITC shell elements (Lee and Bathe 2004) with the recently developed MITC triangular elements (Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018) which were based on the partitions of unity approximation, bubble node, or both. The convergence behavior of the shell elements are measured in well-known benchmark tests; four plane stress tests (mesh distortion test, cantilever beam, Cook's skew beam, and MacNeal beam), two plate tests (Morley's skew plate and circular plate), and six shell tests (curved beam, twisted beam, pinched cylinder, hemispherical shells with or without hole, and Scordelis-Lo roof). To precisely compare and evaluate the solution accuracy of the shell elements, different triangular mesh patterns and distorted element mesh are adopted in the benchmark problems. All shell finite elements considered pass the basic tests; namely, the isotropy, the patch, and the zero energy mode tests.

Curing Induced Residual Stresses in Laminated Cylindrical Shells

  • Lee, Soo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • A viscoelastic finite element analysis is presented to investigate residual stresses occurred in a laminated cylindrical shell during cure. An incremental viscoelastic constitutive equation that can describe stress relaxation during the cure is derived as a recursive formula which can be used conveniently for a numerical analysis. The finite element analysis program is developed on the basis of a 3-D degenerated shell element and the first order shear deformation theory, and is verified by comparing with an one dimensional exact solution. Viscoelastic effect on the residual stresses in the laminated shell during the cure is investigated by performing both the viscoelastic and linear elastic analyses considering thermal deformation and chemical shrinkage simultaneously. The results show that there is big difference between viscoelastic stresses and linear elastic stresses. The effect of cooling rates and cooling paths on the residual stresses is also examined.

  • PDF

Analysis of Shell Structures Subjected to Deformation Dependent Pressure Load (변형종속 압력하중을 받는 셸구조물의 해석)

  • Jang, Myung-Ho;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.93-102
    • /
    • 2002
  • Pressure loads caused by gas, water and wind are the most important load cases in structural analysis. Often the pressure loads are approximated by constant directional loads since it is difficult to evaluate the exact value. However, the pressure load is defined as a displacement dependent one and it is necessary to consider the follower effects of the load in analysis procedure. In this study, the large deformation analysis considering geometrical nonlinearity for shell structures under pressure loads is presented. Finite element by using a three-node flat triangular shell element is formulated and the follower effects of the pressure load are included in the formulation. Some of results are presented for cantilevered beam under uniform external pressure and thin circular ring under non-uniform external pressure. The present results are in good agreement with the results available in existing literature and commercial software ABAQUS.

  • PDF

Stress Analysis of Axisymmetric Cylindrical Shell (축대칭 원통형 셸의 응력해석)

  • Choi, M.S.;Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the algorithm for the static analysis of an axisymmetric cylindrical shell by using the finite element-transfer stiffness coefficient method (FE-TSCM) is suggested. TE-TSCM combining both the modeling procedure of the finite element method (FEM) and the transfer procedure of the transfer stiffness coefficient method (TSCM) has the advantages of FEM and TSCM. After computational programs are made by both FE-TSCM and FEM for the stress analysis of the axisymmetric cylindrical shell, we compare the numerical results by FE-TSCM with those of FEM for two computational models in order to confirm the trust of FE-TSCM.

Design of RC Plates and Shells subjected to Membrance Force and Flexural Moment (철근콘크리트 판형과 쉘의 휨과 막력을 고려한 설계)

  • 조홍진;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.217-222
    • /
    • 2000
  • An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrance and flexural forces. Based on equilibrium consideration, equation for capacity of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, I. e., for each integration point, from the equilibrium between applied and internal forces. Three cases of design are performed for slab element (used by Marti(1987)) and shell element (used by Kirscher and Collins(1986), by Polak and Vecchio(1993)) to verify the adequacy of the present design method for reinforced concrete shells. Based on nonlinear analyses performed, the analytically calculated ultimate load exceeded the design ultimate load. This shows the adequacy of the design method present in this study at least for slab and shell element case studied. To generalize the conclusion more design-analyses should be performed with different shell configurations.

  • PDF

The application of geometrically exact shell element to NURBS generated by NLib (기하학적으로 정확한 쉘 요소의 NLib에 의해 생성된 NURBS 곡면에의 적용)

  • Choi Jin-Bok;Oh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.301-308
    • /
    • 2005
  • In this study, we implement a framework that directly links a general tensor-based shell finite element to NURBS geometric modeling. Generally, in CAD system the surfaces are represented by B-splines or non-uniform rational B-spline(NURBS) blending functions and control points. Here, NURBS blending functions are composed by two parameters defined in local region. A general tensor-based shell element also has a two-parameter representation in the surfaces, and all the computations of geometric quantities can be performed in local surface patch. Naturally, B-spline surface or NURBS function could be directly linked to the shell analysis routine. In our study, we use NLib(NURBS libraray) to generate NURBS for shell finite analysis. The NURBS can be easily generated by interpolating or approximating given set of data points through NLib.

  • PDF

Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation (NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동)

  • Choi, Jin-Bok;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

A Study on the Nonlinear Analysis of Dynamic Response of Shell Structure (Shell 구조물의 비선형 동적응답 해석에 관한 연구)

  • Bae, Dong-Myung;Jin, Jong-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-92
    • /
    • 1992
  • This is analyzed using the finite element method which is appling excellent isoparametric curve element in the aspect of large usages of dynamic responses in which is regarding geometric and material nonlinear of a large scale shell structure of an airplane, a submarine, a ship, and an ocean structure. The solution of dynamic equations is got by direct integration method using time-stepping procedure and regarding Central Difference Method of the both solutions. But because formal matrix factorization is not necessary in each time step and it does not take less time to compute relatively, this method must be regarded very few time steps on the condition. Axisymmatric shell problems are inspected using 8 node Isoparametric element in this paper. Partial axisymmatric spherical shell is used as a model to analyze axisymmatric nonlinear dynamic behavior regarding. Total Lagrangian formulation in geometric nonlinear behavior and elastio-viscoplastic in material nonlinear behavior.

  • PDF

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells Subjected to Support Movements (지점변형을 하는 모임지붕형 쌍곡포물선쉘의 유한요소 해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • This study investigated the behaviors of the gabled hyperbolic paraboloid shell structure subjected to differential settlement and the horizontal displacement due to the elongation of tie rod/beam on supports. Two types of shell structure with different roof slopes are used in study; conventional type which has perimeter beams around the shell panel, and simple type which removes the edge beams along the slab edge line. The effect of the removal of edge beam under vertical or horizontal displacement on supports, and the roof slope was compared using the finite element analysis.

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF