Browse > Article
http://dx.doi.org/10.12989/sem.2018.68.1.017

Benchmark tests of MITC triangular shell elements  

Jun, Hyungmin (Department of Biological Engineering, Massachusetts Institute of Technology)
Mukai, Paul (PVM Associates)
Kim, San (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Structural Engineering and Mechanics / v.68, no.1, 2018 , pp. 17-38 More about this Journal
Abstract
In this paper, we compare and assess the performance of the standard 3- and 6-node MITC shell elements (Lee and Bathe 2004) with the recently developed MITC triangular elements (Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018) which were based on the partitions of unity approximation, bubble node, or both. The convergence behavior of the shell elements are measured in well-known benchmark tests; four plane stress tests (mesh distortion test, cantilever beam, Cook's skew beam, and MacNeal beam), two plate tests (Morley's skew plate and circular plate), and six shell tests (curved beam, twisted beam, pinched cylinder, hemispherical shells with or without hole, and Scordelis-Lo roof). To precisely compare and evaluate the solution accuracy of the shell elements, different triangular mesh patterns and distorted element mesh are adopted in the benchmark problems. All shell finite elements considered pass the basic tests; namely, the isotropy, the patch, and the zero energy mode tests.
Keywords
benchmark test; shell structure; triangular shell element; MITC method; partition of unity; bubble-node;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, S and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43.
2 Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68.   DOI
3 Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418.   DOI
4 Ko, Y., Lee, Y., Lee, P.S. and Bathe, K.J. (2017), "Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193, 187-206.
5 Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962.   DOI
6 Lee, P.S., Noh, H.C. and Choi, C.K. (2008), "Geometry-dependent MITC method for a 2-node iso-beam element", Struct. Eng. Mech., 29, 203-221.   DOI
7 Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), "The modal behavior of the MITC3+ triangular shell element", Comput. Struct., 153, 148-164.
8 Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23.   DOI
9 Lee, Y., Yoon, K. and Lee, P.S. (2012), "Improving the MITC3 shell finite element by using the HellingerReissner principle", Comput. Struct., 110, 93-106.
10 Kim, J. and Bathe, K.J. (2013), "The finite element method enriched by interpolation covers", Comput. Struct., 116, 35-49.
11 MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Fin. Elem. Anal. Des., 1, 3-20.   DOI
12 Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314.   DOI
13 Strouboulis, T., Copps, K. and Babuska, I. (2000), "The generalized finite element method: An example of its implementation and illustration of its performance", Int. J. Numer. Meth. Eng., 47, 1401-1417.
14 Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Meth. Appl. Mech. Eng., 153, 117-126.   DOI
15 Schenk, O. and Gartner, K. (2006), "On fast factorization pivoting methods for sparse symmetric indefinite systems", Electr. Trans. Numer. Anal., 23, 158-179.
16 Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 181, 43-69.   DOI
17 Xu, J.P. and Rajendran, S. (2013), "A 'FE-Meshfree' TRIA3 element based on partition of unity for linear and geometry nonlinear analyses", Comput. Mech., 51, 843-864.   DOI
18 Tian, R., Yagawa, G. and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Meth. Appl. Mech. Eng., 195, 4768-4782.
19 Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York, London.
20 Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-hill.
21 Yoo, S.W. and Choi, C.K. (2000), "Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element", Struct. Eng. Mech., 9(1), 99-110.   DOI
22 Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York, U.S.A.
23 Belytschko, T. and Leviathan, I. (1994), "Physical stabilization of the 4-node shell element with one point quadrature", Comput. Meth. Appl. Mech. Eng., 113, 321-350.   DOI
24 Andelfinger, U. and Ramm, E. (1993), "EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements", Int. J. Numer. Meth. Eng., 36, 1311-1337.
25 Babuska, I. and Melenk, J.M. (1996), "The Partition of Unity Method", Int. J. Numer. Meth. Eng., 40, 727-758.
26 Bathe, K.J. (2016), Finite Element Procedures, 2nd Edition, 2014 and Higher Education Press, China.
27 Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22, 697-722.   DOI
28 Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489.   DOI
29 Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N. and Ong, J.S.J. (1985), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Comput. Meth. Appl. Mech. Eng., 51, 221-258.
30 Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Int. J. Numer. Meth. Eng., 28, 385-414.   DOI
31 Chapelle, D. and Suarez, I.P. (2008), "Detailed reliability assessment of triangular MITC elements for thin shells", Comput. Struct., 86, 2192-2202.   DOI
32 Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34.   DOI
33 Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 207-231.   DOI
34 Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons.
35 Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 190, 2227-2262.   DOI
36 Da Veiga, L.B., Chapelle, D. and Suarez, I.P. (2007), "Towards improving the MITC6 triangular shell element", Comput. Struct., 85, 1589-1610.   DOI
37 Duarte, C.A. and Oden, J.T. (1996), "An hp adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 139, 237-262.
38 Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three dimensional structural mechanics problems", Comput. Struct., 77, 215-232.   DOI
39 Han, S.C., Kanok-Nukulchai, W. and Lee, W.H. (2011), "A refined finite element for first-order plate and shell analysis", Struct. Eng. Mech., 20(2), 191-213.   DOI
40 Hughes, T.J.R. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation.
41 Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142.   DOI
42 Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104.   DOI
43 Kim, D.N. and Bathe, K.J. (2009), "A triangular six-node shell element", Comput. Struct., 87, 1451-1460.   DOI
44 Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Meth. Appl. Mech. Eng., 337, 458-480.
45 Karypis, G. and Kumar, V. (1998), "A fast and high quality multilevel scheme for partitioning irregular graphs", SIAM J. Sci. Comput., 20, 359-392.   DOI