Design of RC Plates and Shells subjected to Membrance Force and Flexural Moment

철근콘크리트 판형과 쉘의 휨과 막력을 고려한 설계

  • Published : 2000.10.01

Abstract

An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrance and flexural forces. Based on equilibrium consideration, equation for capacity of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, I. e., for each integration point, from the equilibrium between applied and internal forces. Three cases of design are performed for slab element (used by Marti(1987)) and shell element (used by Kirscher and Collins(1986), by Polak and Vecchio(1993)) to verify the adequacy of the present design method for reinforced concrete shells. Based on nonlinear analyses performed, the analytically calculated ultimate load exceeded the design ultimate load. This shows the adequacy of the design method present in this study at least for slab and shell element case studied. To generalize the conclusion more design-analyses should be performed with different shell configurations.

Keywords