• Title/Summary/Keyword: sharp bounds

Search Result 47, Processing Time 0.021 seconds

INEQUALITIES CONCERNING POLYNOMIAL AND ITS DERIVATIVE

  • Zargar, B.A.;Gulzar, M.H.;Akhter, Tawheeda
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.631-638
    • /
    • 2021
  • In this paper, some sharp inequalities for ordinary derivative P'(z) and polar derivative DαP(z) = nP(z) + (α - z)P'(z) are obtained by including some of the coefficients and modulus of each individual zero of a polynomial P(z) of degree n not vanishing in the region |z| > k, k ≥ 1. Our results also improve the bounds of Turán's and Aziz's inequalities.

MIXED RADIAL-ANGULAR INTEGRABILITIES FOR HARDY TYPE OPERATORS

  • Ronghui Liu ;Shuangping Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1409-1425
    • /
    • 2023
  • In this paper, we are devoted to studying the mixed radial-angular integrabilities for Hardy type operators. As an application, the upper and lower bounds are obtained for the fractional Hardy operator. In addition, we also establish the sharp weak-type estimate for the fractional Hardy operator.

THE THIRD HERMITIAN-TOEPLITZ AND HANKEL DETERMINANTS FOR PARABOLIC STARLIKE FUNCTIONS

  • Rosihan M. Ali;Sushil Kumar;Vaithiyanathan Ravichandran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.281-291
    • /
    • 2023
  • A normalized analytic function f is parabolic starlike if w(z) := zf' (z)/f(z) maps the unit disk into the parabolic region {w : Re w > |w - 1|}. Sharp estimates on the third Hermitian-Toeplitz determinant are obtained for parabolic starlike functions. In addition, upper bounds on the third Hankel determinants are also determined.

ON PARTIAL SOLUTIONS TO CONJECTURES FOR RADIUS PROBLEMS INVOLVING LEMNISCATE OF BERNOULLI

  • Gurpreet Kaur
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.433-444
    • /
    • 2023
  • Given a function f analytic in open disk centred at origin of radius unity and satisfying the condition |f(z)/g(z) - 1| < 1 for a analytic function g with certain prescribed conditions in the unit disk, radii constants R are determined for the values of Rzf'(Rz)/f(Rz) to lie inside the domain enclosed by the curve |w2 - 1| = 1 (lemniscate of Bernoulli). This, in turn, provides a partial solution to the conjectures and problems for determination of sharp bounds R for such functions f.

THE ZAGREB INDICES OF BIPARTITE GRAPHS WITH MORE EDGES

  • XU, KEXIANG;TANG, KECHAO;LIU, HONGSHUANG;WANG, JINLAN
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.365-377
    • /
    • 2015
  • For a (molecular) graph, the first and second Zagreb indices (M1 and M2) are two well-known topological indices, first introduced in 1972 by Gutman and Trinajstić. The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Let $K_{n_1,n_2}^{P}$ with n1 $\leq$ n2, n1 + n2 = n and p < n1 be the set of bipartite graphs obtained by deleting p edges from complete bipartite graph Kn1,n2. In this paper, we determine sharp upper and lower bounds on Zagreb indices of graphs from $K_{n_1,n_2}^{P}$ and characterize the corresponding extremal graphs at which the upper and lower bounds on Zagreb indices are attained. As a corollary, we determine the extremal graph from $K_{n_1,n_2}^{P}$ with respect to Zagreb coindices. Moreover a problem has been proposed on the first and second Zagreb indices.

ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS

  • Kim, Kyeong-Hun;Lim, Sungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.929-967
    • /
    • 2016
  • Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu=-(-{\Delta})^{\beta}u,\;{\alpha}{\in}(0,2),\;{\beta}{\in}(0,{\infty})$$. If ${\alpha},{\beta}{\in}(0,1)$, then the kernel p(t, x) becomes the transition density of a Levy process delayed by an inverse subordinator. In this paper we provide the asymptotic behaviors and sharp upper bounds of p(t, x) and its space and time fractional derivatives $$D^n_x(-{\Delta}_x)^{\gamma}D^{\sigma}_tI^{\delta}_tp(t,x),\;{\forall}n{\in}{\mathbb{Z}}_+,\;{\gamma}{\in}[0,{\beta}],\;{\sigma},{\delta}{\in}[0,{\infty})$$, where $D^n_x$ x is a partial derivative of order n with respect to x, $(-{\Delta}_x)^{\gamma}$ is a fractional Laplace operator and $D^{\sigma}_t$ and $I^{\delta}_t$ are Riemann-Liouville fractional derivative and integral respectively.

FEKETE-SZEGÖ PROBLEM FOR SUBCLASSES OF STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

  • Shanmugam, T.N.;Ramachandram, C.;Ravichandran, V.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.589-598
    • /
    • 2006
  • In the present investigation, sharp upper bounds of $|a3-{\mu}a^2_2|$ for functions $f(z)=z+a_2z^2+a_3z^3+...$ belonging to certain subclasses of starlike and convex functions with respect to symmetric points are obtained. Also certain applications of the main results for subclasses of functions defined by convolution with a normalized analytic function are given. In particular, Fekete-Szego inequalities for certain classes of functions defined through fractional derivatives are obtained.

A TOPOLOGICAL PROOF OF THE PERRON-FROBENIUS THEOREM

  • Ghoe, Geon H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.565-570
    • /
    • 1994
  • In this article we prove a version of the Perron-Frobenius Theorem in linear algebra using the Brouwer's Fixed Point Theorem in topology. We will mostly concentrate on he qualitative aspect of the Perron-Frobenius Theorem rather than quantitative formulas, which would be enough for theoretical investigations in ergodic theory. By the nature of the method of the proof, we do not expect to obtain a numerical estimate. But we may regard it worthwhile to see why a certain type of result should be true from a topological and geometrical viewpoint. However, a geometric argument alone would give us a sharp numerical bounds on the size of the eigenvalue as shown in Section 2. Eigenvectors of a matrix A will be fixed points of a certain mapping defined in terms of A. We shall modify an existing proof of Frobenius Theorem and that will do the trick for Perron-Frobenius Theorem.

  • PDF

INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL OF PRODUCT INTEGRATORS WITH APPLICATIONS

  • Dragomir, Silvestru Sever
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.791-815
    • /
    • 2014
  • We show amongst other that if $f,g:[a,b]{\rightarrow}\mathbb{C}$ are two functions of bounded variation and such that the Riemann-Stieltjes integral $\int_a^bf(t)dg(t)$ exists, then for any continuous functions $h:[a,b]{\rightarrow}\mathbb{C}$, the Riemann-Stieltjes integral $\int_{a}^{b}h(t)d(f(t)g(t))$ exists and $${\int}_a^bh(t)d(f(t)g(t))={\int}_a^bh(t)f(t)d(g(t))+{\int}_a^bh(t)g(t)d(f(t))$$. Using this identity we then provide sharp upper bounds for the quantity $$\|\int_a^bh(t)d(f(t)g(t))\|$$ and apply them for trapezoid and Ostrowski type inequalities. Some applications for continuous functions of selfadjoint operators on complex Hilbert spaces are given as well.

On the Fekete-Szegö Problem for a Certain Class of Meromorphic Functions Using q-Derivative Operator

  • Aouf, Mohamed Kamal;Orhan, Halit
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.307-318
    • /
    • 2018
  • In this paper, we obtain $Fekete-Szeg{\ddot{o}}$ inequalities for certain class of meromorphic functions f(z) for which $-{\frac{(1-{\frac{{\alpha}}{q}})qzD_qf(z)+{\alpha}qzD_q[zD_qf(z)]}{(1-{\frac{{\alpha}}{q}})f(z)+{\alpha}zD_qf(z)}{\prec}{\varphi}(z)$(${\alpha}{\in}{\mathbb{C}}{\backslash}(0,1]$, 0 < q < 1). Sharp bounds for the $Fekete-Szeg{\ddot{o}}$ functional ${\mid}{\alpha}_1-{\mu}{\alpha}^2_0{\mid}$ are obtained.