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INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL

OF PRODUCT INTEGRATORS WITH APPLICATIONS

Silvestru Sever Dragomir

Abstract. We show amongst other that if f, g : [a, b] → C are two func-
tions of bounded variation and such that the Riemann-Stieltjes integral
∫

b

a
f (t) dg (t) exists, then for any continuous functions h : [a, b] → C, the

Riemann-Stieltjes integral
∫

b

a
h (t) d (f (t) g (t)) exists and

∫

b

a

h (t) d (f (t) g (t)) =

∫

b

a

h (t) f (t) d (g (t)) +

∫

b

a

h (t) g (t) d (f (t)) .

Using this identity we then provide sharp upper bounds for the quantity
∣

∣

∣

∣

∫

b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

and apply them for trapezoid and Ostrowski type inequalities. Some
applications for continuous functions of selfadjoint operators on complex
Hilbert spaces are given as well.

1. Introduction

One of the most important properties of the Riemann-Stieltjes integral
∫ b

a

f (t) dg (t)

is the fact that this integral exists if one of the function is of bounded variation

while the other is continuous. The following sharp inequality holds

(1.1)

∣

∣

∣

∣

∣

∫ b

a

f (t) dg (t)

∣

∣

∣

∣

∣

≤ max
t∈[a,b]

|f (t)|
b
∨

a

(g) ,

provided that f : [a, b] → C is continuous on [a, b] and g : [a, b] → C is of

bounded variation on this interval. Here
b
∨

a

(g) denotes the total variation of g

on [a, b] .
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When g is Lipschitzian with the constant L > 0, i.e.,

|g (t)− g (s)| ≤ L |t− s|

for any t, s ∈ [a, b] , then we have

(1.2)

∣

∣

∣

∣

∣

∫ b

a

f (t) dg (t)

∣

∣

∣

∣

∣

≤ L

∫ b

a

|f (t)| dt

for any Riemann integrable function f : [a, b] → C.
Moreover, if the integrator g ismonotonic nondecreasing on the interval [a, b]

and f : [a, b] → C is continuous, then we have the modulus inequality

(1.3)

∣

∣

∣

∣

∣

∫ b

a

f (t) dg (t)

∣

∣

∣

∣

∣

≤

∫ b

a

|f (t)| dg (t) .

The above inequalities have been used by many authors to derive various inte-
gral inequalities. We provide here some simple examples.

The following generalized trapezoidal inequality for the function of bounded
variation f : [a, b] → C was obtained in 1999 by the author [21, Proposition 1]

∣

∣

∣

∣

∣

∫ b

a

f (t) dt− (x− a) f (a)− (b− x) f (b)

∣

∣

∣

∣

∣

(1.4)

≤

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

] b
∨

a

(f) ,

where x ∈ [a, b] . The constant 1
2 cannot be replaced by a smaller quantity. See

also [19] for a different proof and other details.
The best inequality one can derive from (1.4) is the trapezoid inequality

(1.5)

∣

∣

∣

∣

∣

∫ b

a

f (t) dt−
f (a) + f (b)

2
(b− a)

∣

∣

∣

∣

∣

≤
1

2
(b− a)

b
∨

a

(f) .

Here the constant 1
2 is also best possible.

For related results, see [11]-[15], [17]-[20], [24]-[25], [29]-[32], [35], [41], [34],
[43]-[45] and [53]-[55].

In order to extend the classical Ostrowski’s inequality for differentiable func-
tions with bounded derivatives to the larger class of functions of bounded vari-
ation, the author obtained in 1999 (see [21] or the RGMIA preprint version of
[23]) the following result

(1.6)

∣

∣

∣

∣

∣

∫ b

a

f (t) dt− f (x) (b− a)

∣

∣

∣

∣

∣

≤

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

] b
∨

a

(f)

for any x ∈ [a, b] and f : [a, b] → C a function of bounded variation on [a, b] .

Here
∨b

a (f) denotes the total variation of f on [a, b] and the constant 1
2 is best
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possible in (1.6). The best inequality one can obtain from (1.6) is the midpoint

inequality, namely

(1.7)

∣

∣

∣

∣

∣

∫ b

a

f (t) dt− f

(

a+ b

2

)

(b − a)

∣

∣

∣

∣

∣

≤
1

2
(b− a)

b
∨

a

(f)

for which the constant 1
2 is also sharp.

For related results, see [1]-[11], [16]-[17], [21], [23], [25]-[27], [31], [36]-[38],
[42], [46]-[52] and [56]-[59].

Motivated by the above results, we establish in this paper bounds for the
quantity

∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

in the case when the integrand h is continuous while the functions f and g are of
bounded variation. Applications for the trapezoidal and midpoint inequalities
are given. Some applications for continuous functions of selfadjoint operators
on complex Hilbert spaces are provided as well.

2. The main results

The following identity is of interest in itself:

Lemma 1. Let f, g : [a, b] → C be two functions of bounded variation and

such that the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) exists. If h : [a, b] → C is

continuous, then the Riemann-Stieltjes integral
∫ b

a
h (t) d (f (t) g (t)) exists and

(2.1)

∫ b

a

h (t) d (f (t) g (t)) =

∫ b

a

h (t) f (t) d (g (t)) +

∫ b

a

h (t) g (t) d (f (t)) .

Proof. Since f, g : [a, b] → C are of bounded variation, then fg is of bounded
variation and since h : [a, b] → C is continuous, it follows that the Riemann-

Stieltjes integral
∫ b

a
h (t) d (f (t) g (t)) exists.

Observe that, since the integral
∫ b

a
f (t) dg (t) exists, then for any s ∈ [a, b]

the integral ℓ (s) :=
∫ s

a
f (t) dg (t) exists and the function ℓ is of bounded vari-

ation on [a, b] .
Indeed, let

a = s0 < s1 < · · · < sn−1 < sn = b

a division of the interval [a, b] . Then we have

n−1
∑

i=0

|ℓ (si+1)− ℓ (si)| =
n−1
∑

i=0

∣

∣

∣

∣

∫ si+1

a

f (t) dg (t)−

∫ si

a

f (t) dg (t)

∣

∣

∣

∣

=

n−1
∑

i=0

∣

∣

∣

∣

∫ si+1

si

f (t) dg (t)

∣

∣

∣

∣

≤
n−1
∑

i=0

(

sup
t∈[si,si+1]

|f (t)|

si+1
∨

si

(g)

)
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≤ sup
t∈[a,b]

|f (t)|
n−1
∑

i=0

(

si+1
∨

si

(g)

)

= sup
t∈[a,b]

|f (t)|
b
∨

a

(g) < ∞,

which shows that ℓ is of bounded variation on [a, b] and

b
∨

a

(ℓ) ≤ ‖f‖
∞

b
∨

a

(g) ,

where ‖f‖
∞

:= supt∈[a,b] |f (t)| .

Now, by the integration by parts theorem, since
∫ s

a
f (t) dg (t) exists for any

s ∈ [a, b] , then
∫ s

a
g (t) df (t) also exists and we have the equality

(2.2) f (s) g (s) = f (a) g (a) +

∫ s

a

f (t) dg (t) +

∫ s

a

g (t) df (t)

for any s ∈ [a, b] .
Since the functions

∫

·

a
f (t) dg (t) and

∫

·

a
g (t) df (t) are of bounded variation,

then the Riemann-Stieltjes integrals
∫ b

a

h (s) d

(
∫ s

a

f (t) dg (t)

)

and

∫ b

a

h (s) d

(
∫ s

a

g (t) df (t)

)

exist and

(2.3)

∫ b

a

h (s) d

(
∫ s

a

f (t) dg (t)

)

=

∫ b

a

h (s) f (s) dg (s) ,

and

(2.4)

∫ b

a

h (s) d

(
∫ s

a

g (t) df (t)

)

=

∫ b

a

h (s) g (s) df (s) .

Now, on utilizing (2.2), (2.3) and (2.4) we have
∫ b

a

h (s) d (f (s) g (s)) =

∫ b

a

h (s) d (f (a) g (a))

+

∫ b

a

h (s) d

(
∫ s

a

f (t) dg (t)

)

+

∫ b

a

h (s)

(
∫ s

a

g (t) df (t)

)

=

∫ b

a

h (s) f (s) dg (s) +

∫ b

a

h (s) g (s) df (s)

and the equality (2.1) is proved. �

Remark 1. The dual case also holds, namely, when the functions f, g : [a, b] → C

are continuous and such that the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) exists,

then for any function h : [a, b] → C of bounded variation the Riemann-Stieltjes

integral
∫ b

a
h (t) d (f (t) g (t)) exists and the equality (2.1) is satisfied.



INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL 795

Corollary 1. Let f : [a, b] → C be a functions of bounded variation and such

that the Riemann-Stieltjes integral
∫ b

a
f (t) df (t) exists. If h : [a, b] → C is

continuous, then the Riemann-Stieltjes integral
∫ b

a
h (t) d

(

f2 (t)
)

exists and

(2.5)

∫ b

a

h (t) d
(

f2 (t)
)

= 2

∫ b

a

h (t) f (t) d (f (t)) .

If
∫ b

a
f (t) df (t) exists, then for any continuous function h : [a, b] → C, the

Riemann-Stieltjes integral
∫ b

a
h (t) d

(

|f (t)|2
)

exists and

(2.6)

∫ b

a

h (t) d
(

|f (t)|2
)

=

∫ b

a

h (t) f (t) d
(

f (t)
)

+

∫ b

a

h (t) f (t)d (f (t)) .

In particular, if h : [a, b] → R, then

(2.7)

∫ b

a

h (t) d
(

|f (t)|2
)

= 2Re

(

∫ b

a

h (t) f (t)d (f (t))

)

.

The first bound for the Riemann-Stieltjes integral of product integrators is
as follows:

Theorem 1. Let f, g : [a, b] → C be two functions of bounded variation and

such that the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) exists. If h : [a, b] → C

is continuous, then
∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

≤ ‖hf‖
∞

b
∨

a

(g) + ‖hg‖
∞

b
∨

a

(f)(2.8)

≤ ‖h‖
∞

[

‖f‖
∞

b
∨

a

(g) + ‖g‖
∞

b
∨

a

(f)

]

.

Both inequalities in (2.8) are sharp.

Proof. We know that if p : [a, b] → C is bounded, v : [a, b] → C is of bounded

variation and the Riemann-Stieltjes integral
∫ b

a
p (s) dv (s) exists, then we have

the inequality

(2.9)

∣

∣

∣

∣

∣

∫ b

a

p (s) dv (s)

∣

∣

∣

∣

∣

≤ ‖p‖
∞

b
∨

a

(v) ,

where ‖p‖
∞

= supt∈[a,b] |p (t)| < ∞.

Taking the modulus in (2.1) and using the property (2.9) we have
∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ b

a

h (t) f (t) d (g (t))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

h (t) g (t) d (f (t))

∣

∣

∣

∣

∣

≤ ‖hf‖
∞

b
∨

a

(g) + ‖hg‖
∞

b
∨

a

(f)
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≤ ‖h‖
∞

‖f‖
∞

b
∨

a

(g) + ‖h‖
∞

‖g‖
∞

b
∨

a

(f)

= ‖h‖
∞

[

‖f‖
∞

b
∨

a

(g) + ‖g‖
∞

b
∨

a

(f)

]

and the inequality (2.8) is proved.
Now, to prove the sharpness of the inequalities (2.8) we consider the func-

tions f, g : [a, b] → R given by

f (t) :=

{

0 if t = a
1 if t ∈ (a, b],

g (t) :=

{

1 if t ∈ [a, b)
0 if t = b.

The functions f and g are of bounded variation,
b
∨

a

(f) =
b
∨

a

(g) = 1 and ‖f‖
∞

=

‖g‖
∞

= 1. We have

f (t) g (t) :=







0 if t = a
1 if t ∈ (a, b)
0 if t = b.

The function fg is of bounded variation and for a continuous function h :

[a, b] → C the Riemann-Stieltjes integral
∫ b

a
h (t) d (f (t) g (t)) exists and inte-

grating by parts we have
∫ b

a

h (t) d (f (t) g (t))(2.10)

= f (b) g (b)h (b)− f (a) g (a)h (a)−

∫ b

a

f (t) g (t) d (h (t))

= −

∫ b

a

f (t) g (t) d (h (t)) .

Consider the following sequence of divisions and intermediate points

a = x
(n)
0 < ξ

(n)
0 < x

(n)
1 < · · · < x

(n)
n−1 < ξ

(n)
n−1 < x(n)

n = b

such that the norm of the division ∆n := maxi∈{0,...,n−1}

(

x
(n)
i+1 − x

(n)
i

)

→ 0 as

n → ∞. By the definition of the Riemann-Stieltjes integral we have
∫ b

a

f (t) g (t) d (h (t)) = lim
n→∞

n−1
∑

i=0

f
(

ξ
(n)
i

)

g
(

ξ
(n)
i

)(

h
(

x
(n)
i+1

)

− h
(

x
(n)
i

))

= lim
n→∞

n−1
∑

i=0

(

h
(

x
(n)
i+1

)

− h
(

x
(n)
i

))

= h (b)− h (a) ,

and then, by (2.10) we have
∫ b

a

h (t) d (f (t) g (t)) = −h (b) + h (a) .
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We also have

h (t) f (t) :=

{

0 if t = a
h (t) if t ∈ (a, b],

h (t) g (t) :=

{

h (t) if t ∈ [a, b)
0 if t = b,

which implies that

‖hf‖
∞

= ‖hg‖
∞

= ‖h‖
∞

.

Therefore the inequality (2.8) reduces to

(2.11) |h (b)− h (a)| ≤ 2 ‖h‖
∞

≤ 2 ‖h‖
∞

.

We observe that, this inequality is sharp since for continuous functions h :
[a, b] → R for which

0 < h (b) = −h (a) = sup
t∈[a,b]

h (t) ,

we get equality in (2.11).
For instance, if we take

h (t) = t−
a+ b

2
, t ∈ [a, b] ,

then

|h (b)− h (a)| = b− a, ‖h‖
∞

=
b− a

2

and the equality in (2.11) is realized. �

Remark 2. We observe that if one of the functions f or g is constant, then
(2.8) reduces to (1.1).

We say that the function f : [a, b] → C is Lipschitzian with the constant
L > 0 if

|f (t)− f (s)| ≤ L |t− s|

for any t, s ∈ [a, b] .

Theorem 2. Assume that the function f : [a, b] → C is Lipschitzian with the

constant L > 0, g : [a, b] → C is Lipschitzian with the constant K > 0 and

h : [a, b] → C a continuous function on [a, b] . Then we have the inequality

∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

≤ K

∫ b

a

|h (t) f (t)| dt+ L

∫ b

a

|h (t) g (t)| dt(2.12)

≤ max {K,L}

∫ b

a

|h (t)| (|f (t)|+ |g (t)|) dt.

The inequalities in (2.12) are sharp.
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Proof. It is known that, if p : [a, b] → C is continuous and v : [a, b] → C

is Lipschitzian with the constant L > 0, then the Riemann-Stieltjes integral
∫ b

a
p (s) dv (s) exists and we have the inequality

(2.13)

∣

∣

∣

∣

∣

∫ b

a

p (s) dv (s)

∣

∣

∣

∣

∣

≤ L

∫ b

a

|p (s)| ds.

Taking the modulus in (2.1) and using the property (2.9) we have
∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ b

a

h (t) f (t) d (g (t))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

h (t) g (t) d (f (t))

∣

∣

∣

∣

∣

≤ K

∫ b

a

|h (t) f (t)| dt+ L

∫ b

a

|h (t) g (t)| dt

≤ max {K,L}

∫ b

a

|h (t)| (|f (t)|+ |g (t)|) dt,

and the inequality (2.12) is proved.
Consider now the functions f, g : [a, b] → R, f (t) = g (t) =

∣

∣t− a+b
2

∣

∣ . We
observe that f and g are Lipschitzian with the constant L = 1.

Indeed, for any t, s ∈ [a, b] we have

|f (t)− f (s)| =

∣

∣

∣

∣

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

−

∣

∣

∣

∣

s−
a+ b

2

∣

∣

∣

∣

∣

∣

∣

∣

≤ |t− s| ,

which shows that the function f is Lipschitzian with the constant L = 1.
Now

∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

=

∫ b

a

h (t) d

(

(

t−
a+ b

2

)2
)

= 2

∣

∣

∣

∣

∣

∫ b

a

h (t)

(

t−
a+ b

2

)

dt

∣

∣

∣

∣

∣

and

K

∫ b

a

|h (t) f (t)| dt+ L

∫ b

a

|h (t) g (t)| dt = 2

∫ b

a

|h (t)|

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

dt

and the first inequality in (2.12) becomes
∣

∣

∣

∣

∣

∫ b

a

h (t)

(

t−
a+ b

2

)

dt

∣

∣

∣

∣

∣

≤

∫ b

a

|h (t)|

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

dt.

We observe that the equality case holds if we take h : [a, b] → R, h (t) =
t− a+b

2 . �
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Remark 3. We remark that in the dual case, namely when the functions f, g :
[a, b] → C are continuous and h : [a, b] → C is Lipschitzian with a constant

M > 0, then the Riemann-Stieltjes integral
∫ b

a
h (t) d (f (t) g (t)) exists and

integrating by parts we have
∫ b

a

h (t) d (f (t) g (t)) = f (b) g (b)h (b)− f (a) g (a)h (a)−

∫ b

a

f (t) g (t) d (h (t))

or, equivalently

f (b) g (b)h (b)− f (a) g (a)h (a)−

∫ b

a

h (t) d (f (t) g (t))(2.14)

=

∫ b

a

f (t) g (t) d (h (t)) .

Taking the modulus in (2.14) and using the property (2.13) we get the inequality
∣

∣

∣

∣

∣

f (b) g (b)h (b)−f (a) g (a)h (a)−

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

≤ M sup
t∈[a,b]

|f (t) g (t)| .

Theorem 3. Assume that f, g : [a, b] → R are monotonic nondecreasing on

[a, b] and such that the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) exists, and h :

[a, b] → C is continuous on [a, b] . Then we have the inequality

(2.15)

∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

≤

∫ b

a

|f (t)h (t)| dg (t) +

∫ b

a

|g (t)h (t)| df (t) .

The inequality (2.15) is sharp.

Proof. It is well known that if p : [a, b] → C is continuous and v : [a, b] → R

is monotonic nondecreasing, then the Riemann-Stieltjes integral
∫ b

a
p (t) dv (t)

exists and

(2.16)

∣

∣

∣

∣

∣

∫ b

a

p (t) dv (t)

∣

∣

∣

∣

∣

≤

∫ b

a

|p (t)| dv (t) .

Taking the modulus in (2.1) we have
∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ b

a

f (t)h (t) dg (t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

g (t)h (t) df (t)

∣

∣

∣

∣

∣

≤

∫ b

a

|f (t)h (t)| dg (t) +

∫ b

a

|g (t)h (t)| df (t) .

Consider the functions f, g : [a, b] → R defined by

f (t) :=

{

0 if t = a
1 if t ∈ (a, b],

g (t) :=

{

−1 if t ∈ [a, b)
0 if t = b.

The functions f and g are monotonic nondecreasing. We will show that the

Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) exists.
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Take the sequence of divisions and intermediate points

dn : a = x
(n)
0 < ξ

(n)
0 < x

(n)
1 < · · · < x

(n)
n−1 < ξ

(n)
n−1 < x(n)

n = b

such that ∆ (dn) := maxi∈{0,...,n−1}

{

x
(n)
i+1 − x

(n)
i

}

→ 0 as n → ∞.

By the definition of the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) we have

∫ b

a

f (t) dg (t) = lim
n→∞

n−1
∑

i=0

f
(

ξ
(n)
i

) [

g
(

x
(n)
i+1

)

− g
(

x
(n)
i

)]

= lim
n→∞

n−2
∑

i=0

f
(

ξ
(n)
i

) [

g
(

x
(n)
i+1

)

− g
(

x
(n)
i

)]

+ lim
n→∞

f
(

ξ
(n)
n−1

) [

g (b)− g
(

x
(n)
n−1

)]

= 0 + 1 = 1.

Now, define the function ℓ : [a, b] → R by

ℓ (t) := f (t) g (t) =







0 if t = a
−1 if t ∈ (a, b)
0 if t = a.

For a continuous function h : [a, b] → R, since ℓ is of bounded variation, then

the integral
∫ b

a
h (t) dℓ (t) exists.

Take the sequence of divisions and intermediate points

dn : a = x
(n)
0 < ξ

(n)
0 < x

(n)
1 < · · · < x

(n)
n−1 < ξ

(n)
n−1 < x(n)

n = b

such that ∆ (dn) := maxi∈{0,...,n−1}

{

x
(n)
i+1 − x

(n)
i

}

→ 0 as n → ∞. Then we

have
∫ b

a

h (t) dℓ (t) = lim
n→∞

n−1
∑

i=0

h
(

ξ
(n)
i

) [

ℓ
(

x
(n)
i+1

)

− ℓ
(

x
(n)
i

)]

= lim
n→∞

h
(

ξ
(n)
0

) [

ℓ
(

x
(n)
1

)

− ℓ (a)
]

+ lim
n→∞

n−2
∑

i=1

h
(

ξ
(n)
i

) [

ℓ
(

x
(n)
i+1

)

− ℓ
(

x
(n)
i

)]

+ lim
n→∞

h
(

ξ
(n)
n−1

) [

ℓ (b)− ℓ
(

x
(n)
n−1

)]

= lim
n→∞

h
(

ξ
(n)
0

)

(−1− 0) + 0 + lim
n→∞

h
(

ξ
(n)
n−1

)

[0− (−1)]

= h (b)− h (a) .

Consider the functions u, v : [a, b] → R given by

u (t) := |f (t)h (t)| =

{

0 if t = a
|h (t)| if t ∈ (a, b],
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and

v (t) := |g (t)h (t)| =

{

|h (t)| if t ∈ [a, b)
0 if t = b.

Take the sequence of divisions and intermediate points

dn : a = x
(n)
0 < ξ

(n)
0 < x

(n)
1 < · · · < x

(n)
n−1 < ξ

(n)
n−1 < x(n)

n = b

such that ∆ (dn) := maxi∈{0,...,n−1}

{

x
(n)
i+1 − x

(n)
i

}

→ 0 as n → ∞. Then we

have
∫ b

a

u (t) dg (t) = lim
n→∞

n−1
∑

i=0

u
(

ξ
(n)
i

) [

g
(

x
(n)
i+1

)

− g
(

x
(n)
i

)]

= lim
n→∞

u
(

ξ
(n)
n−1

) [

g (b)− g
(

x
(n)
n−1

)]

= lim
n→∞

∣

∣

∣
h
(

ξ
(n)
n−1

)∣

∣

∣
[0− (−1)] = |h (b)|

and
∫ b

a

v (t) df (t) = lim
n→∞

n−1
∑

i=0

v
(

ξ
(n)
i

) [

f
(

x
(n)
i+1

)

− f
(

x
(n)
i

)]

= lim
n→∞

v
(

ξ
(n)
0

) [

f
(

x
(n)
1

)

− f (a)
]

= lim
n→∞

∣

∣

∣
h
(

ξ
(n)
0

)∣

∣

∣
(1− 0) = |h (a)| .

Replacing these values in (2.15) we have

(2.17) |h (b)− h (a)| ≤ |h (b)|+ |h (a)| .

This inequality reduces to an equality if we choose a continuous function h :
[a, b] → R such that h (b) = −h (a) . For instance, for h : [a, b] → R, h (t) =
t− a+b

2 , we get in both sides of (2.17) the same quantity b − a. �

Remark 4. We remark that in the dual case, namely when the functions f, g :
[a, b] → C are continuous and h : [a, b] → R is monotonic nondecreasing, then

the Riemann-Stieltjes integral
∫ b

a
h (t) d (f (t) g (t)) exists and integrating by

parts we have the equality (2.14). Taking the modulus in this equality and
using the property (2.16) we get

∣

∣

∣

∣

∣

f (b) g (b)h (b)− f (a) g (a)h (a)−

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

(2.18)

≤

∫ b

a

|f (t) g (t)| d (h (t)) .

We observe that in our Theorems 1, 2 and 3 we assumed that the factors of
the integrator, namely f and g have the same properties. The reader can also
consider the other cases when one has a property and the other has a different



802 S. S. DRAGOMIR

property, for example f is of bounded variation and g is Lipschitzian with a
constant L. In this case, if h is continuous, then we have

∣

∣

∣

∣

∣

∫ b

a

h (t) d (f (t) g (t))

∣

∣

∣

∣

∣

(2.19)

≤

∣

∣

∣

∣

∣

∫ b

a

h (t) f (t) d (g (t))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

h (t) g (t) d (f (t))

∣

∣

∣

∣

∣

≤ L

∣

∣

∣

∣

∣

∫ b

a

h (t) f (t) dt

∣

∣

∣

∣

∣

+ sup
t∈[a,b]

|h (t) g (t)|
b
∨

a

(f) .

The details in the other cases are omitted.

3. Applications for trapezoid type inequalities

The following result holds:

Proposition 1. Let f, g : [a, b] → C be two functions of bounded variation

and such that the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) exists. Then for any

x ∈ [a, b] we have
∣

∣

∣

∣

∣

f (b) g (b) (b− x) + f (a) g (a) (x− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(3.1)

≤ sup
t∈[a,b]

|(t− x) g (t)|
b
∨

a

(f) + sup
t∈[a,b]

|(t− x) f (t)|
b
∨

a

(g)

≤

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

]

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

.

In particular, we have
∣

∣

∣

∣

∣

f (b) g (b) + f (a) g (a)

2
(b − a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(3.2)

≤ sup
t∈[a,b]

∣

∣

∣

∣

(

t−
a+ b

2

)

g (t)

∣

∣

∣

∣

b
∨

a

(f) + sup
t∈[a,b]

∣

∣

∣

∣

(

t−
a+ b

2

)

f (t)

∣

∣

∣

∣

b
∨

a

(g)

≤
1

2
(b− a)

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

.

The inequalities (3.2) are sharp.

Proof. We use the following identity

(3.3) F (b) (b− x) + F (a) (x− a)−

∫ b

a

F (t) dt =

∫ b

a

(t− x) dF (t)
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that holds for any function of bounded variation F : [a, b] → C and any x ∈
[a, b] .

If we write the equality (3.3) for F = fg we get

f (b) g (b) (b− x) + f (a) g (a) (x− a)−

∫ b

a

f (t) g (t) dt(3.4)

=

∫ b

a

(t− x) d (f (t) g (t))

for any x ∈ [a, b] .
If we use Theorem 1 for the function h (t) = t− x, t ∈ [a, b] , then we have

the inequality
∣

∣

∣

∣

∣

∫ b

a

(t− x) d (f (t) g (t))

∣

∣

∣

∣

∣

(3.5)

≤ sup
t∈[a,b]

|(t− x) g (t)|
b
∨

a

(f) + sup
t∈[a,b]

|(t− x) g (f)|
b
∨

a

(g)

≤ sup
t∈[a,b]

|t− x|

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

= max {x− a, b− x}

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

=

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

]

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

and the desired result (3.1) is obtained.
The inequality (3.2) follows from (3.1) for x = a+b

2 .
Let us prove the sharpness of the inequalities (3.2).
Consider the functions f, g : [a, b] → R defined by

f (t) :=

{

0 if t = a
1 if t ∈ (a, b],

g (t) :=

{

1 if t ∈ [a, b)
0 if t = b.

We observe that f and g are of bounded variation and

b
∨

a

(f) =
b
∨

a

(g) = 1.

Take the sequence of divisions and intermediate points

dn : a = x
(n)
0 < ξ

(n)
0 < x

(n)
1 < · · · < x

(n)
n−1 < ξ

(n)
n−1 < x(n)

n = b

such that ∆ (dn) := maxi∈{0,...,n−1}

{

x
(n)
i+1 − x

(n)
i

}

→ 0 as n → ∞.
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By the definition of the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) we have

∫ b

a

f (t) dg (t) = lim
n→∞

n−1
∑

i=0

f
(

ξ
(n)
i

) [

g
(

x
(n)
i+1

)

− g
(

x
(n)
i

)]

= lim
n→∞

n−2
∑

i=0

f
(

ξ
(n)
i

) [

g
(

x
(n)
i+1

)

− g
(

x
(n)
i

)]

+ lim
n→∞

f
(

ξ
(n)
n−1

) [

g (b)− g
(

x
(n)
n−1

)]

= 0− 1 = −1,

which shows that this integral exists.
Observe that

(

t−
a+ b

2

)

f (t) :=

{

0 if t = a
t− a+b

2 if t ∈ (a, b],
(

t−
a+ b

2

)

g (t) :=

{

t− a+b
2 if t ∈ [a, b)

0 if t = b.

Then

sup
t∈[a,b]

∣

∣

∣

∣

(

t−
a+ b

2

)

g (t)

∣

∣

∣

∣

=
b− a

2

and

sup
t∈[a,b]

∣

∣

∣

∣

(

t−
a+ b

2

)

f (t)

∣

∣

∣

∣

=
b− a

2
.

We also have

f (b) g (b) + f (a) g (a)

2
(b− a)−

∫ b

a

f (t) g (t) dt = − (b− a) .

Now, if we replace these values in (3.2) then we get in all terms the same
quantity b− a. �

In a similar way we can prove the following results as well:

Proposition 2. Let f : [a, b] → C be Lipschitzian with the constant L > 0 and

g : [a, b] → C be Lipschitzian with the constant K > 0. Then for any x ∈ [a, b]
we have

∣

∣

∣

∣

∣

f (b) g (b) (b− x) + f (a) g (a) (x− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(3.6)

≤ L

∫ b

a

|t− x| |g (t)| dt+K

∫ b

a

|t− x| |f (t)| dt

≤

[

1

4
(b− a)

2
+

(

x−
a+ b

2

)2
]

(L ‖g‖
∞

+K ‖f‖
∞
) .
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In particular, we have
∣

∣

∣

∣

∣

f (b) g (b) + f (a) g (a)

2
(b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(3.7)

≤ L

∫ b

a

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

|g (t)| dt+K

∫ b

a

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

|f (t)| dt

≤
1

4
(b− a)

2
(L ‖g‖

∞
+K ‖f‖

∞
) .

We also have:

Proposition 3. Assume that f, g : [a, b] → R are monotonic nondecreasing on

[a, b] and such that the Riemann-Stieltjes integral
∫ b

a
f (t) dg (t) exists. Then

for any x ∈ [a, b] we have
∣

∣

∣

∣

∣

f (b) g (b) (b − x) + f (a) g (a) (x− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(3.8)

≤

∫ b

a

|t− x| |g (t)| df (t) +

∫ b

a

|t− x| |f (t)| dg (t)

≤

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

]

(

∫ b

a

|g (t)| df (t) +

∫ b

a

|f (t)| dg (t)

)

.

In particular, we have
∣

∣

∣

∣

∣

f (b) g (b) + f (a) g (a)

2
(b − a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(3.9)

≤

∫ b

a

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

|g (t)| df (t) +

∫ b

a

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

|f (t)| dg (t)

≤
1

2
(b− a)

(

∫ b

a

|g (t)| df (t) +

∫ b

a

|f (t)| dg (t)

)

.

4. Applications for Ostrowski type inequalities

The following result holds:

Proposition 4. Let f, g : [a, b] → C be two functions of bounded variation

and such that for x ∈ (a, b) the Riemann-Stieltjes integrals
∫ x

a
f (t) dg (t) and

∫ b

x
f (t) dg (t) exist. Then we have

∣

∣

∣

∣

∣

f (x) g (x) (b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(4.1)

≤ (x− a) sup
t∈[a,x]

{|f (t)|}
x
∨

a

(g) + (x− a) sup
t∈[a,x]

{|g (t)|}
x
∨

a

(f)
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+ (b− x) sup
t∈[x,b]

{|f (t)|}
b
∨

x

(g) + (b− x) sup
t∈[x,b]

{|g (t)|}
b
∨

x

(f)

≤

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

]

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

.

In particular, if the Riemann-Stieltjes integrals
∫

a+b

2

a
f(t)dg(t) and

∫ b
a+b

2

f(t)dg(t)

exist, then we have
∣

∣

∣

∣

∣

f

(

a+ b

2

)

g

(

a+ b

2

)

(b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(4.2)

≤
b− a

2



 sup
t∈[a, a+b

2
]
{|f (t)|}

a+b

2
∨

a

(g) + sup
t∈[a, a+b

2
]
{|g (t)|}

a+b

2
∨

a

(f)

sup
t∈[ a+b

2
,b]

{|f (t)|}
b
∨

a+b

2

(g) + sup
t∈[ a+b

2
,b]

{|g (t)|}
b
∨

a+b

2

(f)





≤
1

2
(b− a)

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

.

The inequalities in (4.2) are sharp.

Proof. We use the following identity (see for instance [23])

(4.3) F (x) (b− a)−

∫ b

a

F (t) dt =

∫ x

a

(t− a) dF (t) +

∫ b

x

(t− b) dF (t)

that holds for any function of bounded variation F : [a, b] → C and any x ∈
[a, b] .

If we write the equality (4.3) for F = fg we get

f (x) g (x) (b− a)−

∫ b

a

f (t) g (t) dt(4.4)

=

∫ x

a

(t− a) d (f (t) g (t)) +

∫ b

x

(t− b) d (f (t) g (t))

for any functions f, g : [a, b] → C of bounded variation and any x ∈ [a, b] .
Taking the modulus on (4.4) and utilizing Theorem 1 on the intervals [a, x]

and [x, b] we have successively that
∣

∣

∣

∣

∣

f (x) g (x) (b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(4.5)

≤

∣

∣

∣

∣

∫ x

a

(t− a) d (f (t) g (t))

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

x

(t− b) d (f (t) g (t))

∣

∣

∣

∣

∣
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≤ sup
t∈[a,x]

{(t− a) |f (t)|}
x
∨

a

(g) + sup
t∈[a,x]

{(t− a) |g (t)|}
x
∨

a

(f)

+ sup
t∈[x,b]

{(b− t) |f (t)|}
b
∨

x

(g) + sup
t∈[x,b]

{(b− t) |g (t)|}
b
∨

x

(f)

≤ (x− a) sup
t∈[a,x]

{|f (t)|}
x
∨

a

(g) + (x− a) sup
t∈[a,x]

{|g (t)|}
x
∨

a

(f)

+ (b− x) sup
t∈[x,b]

{|f (t)|}
b
∨

x

(g) + (b− x) sup
t∈[x,b]

{|g (t)|}
b
∨

x

(f)

≤ max {x− a, b− x} sup
t∈[a,b]

{|f (t)|}
b
∨

a

(g)

+ max {x− a, b− x} sup
t∈[a,b]

{|g (t)|}
b
∨

a

(f)

=

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

]

[

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g)

]

,

which proves the desired result (4.1).
The inequality (4.2) is obvious from (4.1).
Consider now the functions f, g : [a, b] → R defined by

f (t) :=

{

0 if t ∈
[

a, a+b
2

)

1 if t ∈
[

a+b
2 , b

] g (t) :=

{

1 if t ∈
[

a, a+b
2

]

0 if t ∈
(

a+b
2 , b

]

.

We observe that f and g are of bounded variation and

b
∨

a

(f) =

b
∨

a

(g) = 1.

The Riemann-Stieltjes integrals
∫

a+b
2

a
f (t) dg (t) and

∫ b
a+b
2

f (t) dg (t) exist since

one function is continuous while the other is of bounded variation on those
intervals.

We observe that for these functions we have

f

(

a+ b

2

)

g

(

a+ b

2

)

(b− a)−

∫ b

a

f (t) g (t) dt = b− a,

sup
t∈[a, a+b

2
]
{|f (t)|}

a+b
2
∨

a

(g) + sup
t∈[a, a+b

2
]
{|g (t)|}

a+b
2
∨

a

(f)
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+ sup
t∈[ a+b

2
,b]

{|f (t)|}
b
∨

a+b

2

(g) + sup
t∈[ a+b

2
,b]

{|g (t)|}
b
∨

a+b

2

(f) = 2

and

‖g‖
∞

b
∨

a

(f) + ‖f‖
∞

b
∨

a

(g) = 2.

Replacing these values in (4.2) we obtain in all terms the same quantity b− a,
which proves the sharpness of the inequalities. �

In a similar way we can prove the following results as well:

Proposition 5. Let f : [a, b] → C be Lipschitzian with the constant L > 0 and

g : [a, b] → C be Lipschitzian with the constant K > 0. Then for any x ∈ [a, b]
we have

∣

∣

∣

∣

∣

f (x) g (x) (b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(4.6)

≤ L

(

∫ x

a

(t− a) |g (t)| dt+

∫ b

x

(b− t) |g (t)| dt

)

+K

(

∫ x

a

(t− a) |f (t)| dt+

∫ b

x

(b − t) |f (t)| dt

)

≤

[

1

4
(b− a)

2
+

(

x−
a+ b

2

)2
]

(L ‖g‖
∞

+K ‖f‖
∞
) .

In particular, we have

∣

∣

∣

∣

∣

f

(

a+ b

2

)

g

(

a+ b

2

)

(b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(4.7)

≤ L

(

∫
a+b
2

a

(t− a) |g (t)| dt+

∫ b

a+b
2

(b− t) |g (t)| dt

)

+K

(

∫
a+b
2

a

(t− a) |f (t)| dt+

∫ b

a+b
2

(b− t) |f (t)| dt

)

≤
1

4
(b− a)2 (L ‖g‖

∞
+K ‖f‖

∞
) .

We also have:

Proposition 6. Assume that f, g : [a, b] → R are monotonic nondecreasing on

[a, b] and such that for x ∈ (a, b) the Riemann-Stieltjes integrals
∫ x

a
f (t) dg (t)
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and
∫ b

x
f (t) dg (t) exist. Then we have
∣

∣

∣

∣

∣

f (x) g (x) (b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(4.8)

≤

∫ x

a

(t− a) |g (t)| df (t) +

∫ b

x

(b− t) |g (t)| df (t)

+

∫ x

a

(t− a) |f (t)| dg (t) +

∫ b

x

(b− t) |f (t)| dg (t)

≤

[

1

2
(b− a) +

∣

∣

∣

∣

x−
a+ b

2

∣

∣

∣

∣

]

(

∫ b

a

|g (t)| df (t) +

∫ b

a

|f (t)| dg (t)

)

.

In particular, if the Riemann-Stieltjes integrals
∫

a+b
2

a
f(t)dg(t) and

∫ b
a+b
2

f(t)dg(t)

exist, then we have
∣

∣

∣

∣

∣

f

(

a+ b

2

)

g

(

a+ b

2

)

(b− a)−

∫ b

a

f (t) g (t) dt

∣

∣

∣

∣

∣

(4.9)

≤

∫
a+b

2

a

(t− a) |g (t)| df (t) +

∫ b

a+b

2

(b− t) |g (t)| df (t)

+

∫
a+b

2

a

(t− a) |f (t)| dg (t) +

∫ b

a+b

2

(b− t) |f (t)| dg (t)

≤
1

2
(b− a)

(

∫ b

a

|g (t)| df (t) +

∫ b

a

|f (t)| dg (t)

)

.

5. Applications for selfadjoint operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H ; 〈·, ·〉) . Let A ∈ B (H) be selfadjoint and let ϕλ be
defined for all λ ∈ R as follows

ϕλ (s) :=







1, for −∞ < s ≤ λ,

0, for λ < s < +∞.

Then for every λ ∈ R the operator

(5.1) Eλ := ϕλ (A)

is a projection which reduces A.
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators
in Hilbert spaces, see for instance [33, p. 256]:

Theorem 4 (Spectral Representation Theorem). Let A be a bounded selfad-

joint operator on the Hilbert space H and let m = min {λ | λ ∈ Sp (A)} =:



810 S. S. DRAGOMIR

minSp (A) and M = max {λ | λ ∈ Sp (A)} =: maxSp (A) . Then there ex-

ists a family of projections {Eλ}λ∈R
, called the spectral family of A, with the

following properties

a) Eλ ≤ Eλ′ for λ ≤ λ′;
b) Em−0 = 0, EM = I and Eλ+0 = Eλ for all λ ∈ R;
c) We have the representation

A =

∫ M

m−0

λdEλ.

More generally, for every continuous complex-valued function ϕ defined on

R and for every ε > 0 there exists a δ > 0 such that
∥

∥

∥

∥

∥

ϕ (A)−
n
∑

k=1

ϕ (λ′

k)
[

Eλk
− Eλk−1

]

∥

∥

∥

∥

∥

≤ ε

whenever






λ0 < m = λ1 < · · · < λn−1 < λn = M,
λk − λk−1 ≤ δ for 1 ≤ k ≤ n,
λ′

k ∈ [λk−1, λk] for 1 ≤ k ≤ n

this means that

(5.2) ϕ (A) =

∫ M

m−0

ϕ (λ) dEλ,

where the integral is of Riemann-Stieltjes type.

Corollary 2. With the assumptions of Theorem 4 for A,Eλ and ϕ we have

the representations

ϕ (A) x =

∫ M

m−0

ϕ (λ) dEλx for all x ∈ H

and

(5.3) 〈ϕ (A)x, y〉 =

∫ M

m−0

ϕ (λ) d 〈Eλx, y〉 for all x, y ∈ H.

In particular,

〈ϕ (A)x, x〉 =

∫ M

m−0

ϕ (λ) d 〈Eλx, x〉 for all x ∈ H.

Moreover, we have the equality

‖ϕ (A)x‖2 =

∫ M

m−0

|ϕ (λ)|2 d ‖Eλx‖
2

for all x ∈ H.

Proposition 7. Let A be a bounded selfadjoint operator on the Hilbert space H
and let m = min {λ |λ ∈ Sp (A)} =: minSp (A) and M = max {λ |λ ∈ Sp (A)}
=: maxSp (A) . Assume that f, g : R → C are continuous.
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(i) If f, g are of bounded variation on [m,M ] , then

|〈[f (M) g (M) I − f (A) g (A)]x, y〉|(5.4)

≤ sup
t∈[m,M ]

|〈Etx, y〉|

[

sup
t∈[m,M ]

|f (t)|
M
∨

m

(g) + sup
t∈[m,M ]

|f (g)|
M
∨

m

(f)

]

≤ ‖x‖ ‖y‖

[

sup
t∈[m,M ]

|f (t)|
M
∨

m

(g) + sup
t∈[m,M ]

|f (g)|
M
∨

m

(f)

]

for any x, y ∈ H.
(ii) If f, g : R → C are Lipschitzian with the constants L, respectively K

on [m,M ] , then

|〈[f (M) g (M) I − f (A) g (A)]x, y〉|(5.5)

≤ K

∫ M

m−0

|〈Etx, y〉 f (t)| dt+ L

∫ M

m−0

|〈Etx, y〉 g (t)| dt

≤ sup
t∈[m,M ]

|〈Etx, y〉|

[

K

∫ M

m

|f (t)| dt+ L

∫ M

m

|g (t)| dt

]

≤ ‖x‖ ‖y‖

[

K

∫ M

m

|f (t)| dt+ L

∫ M

m

|g (t)| dt

]

for any x, y ∈ H.
(iii) If f, g : R → C are monotonic nondecreasing on [m,M ] , then

|〈[f (M) g (M) I − f (A) g (A)]x, y〉|(5.6)

≤

∫ M

m−0

|〈Etx, y〉 f (t)| dg (t) +

∫ M

m−0

|〈Etx, y〉 g (t)| df (t)

≤ sup
t∈[m,M ]

|〈Etx, y〉|

[

∫ M

m

|f (t)| dg (t) +

∫ M

m

|g (t)| df (t)

]

≤ ‖x‖ ‖y‖

[

∫ M

m

|f (t)| dg (t) +

∫ M

m

|g (t)| df (t)

]

for any x, y ∈ H.

Proof. Let ε > 0. We use the fact that (see Remark 1)
∫ M

m−ε

〈Etx, y〉 d (f (t) g (t))(5.7)

=

∫ M

m−ε

〈Etx, y〉 f (t) d (g (t)) +

∫ M

m−ε

〈Etx, y〉 g (t) d (f (t))

for any x, y ∈ H, since 〈E·x, y〉 is of bounded variation on [m− ε,M ] while f ,
g are continuous on [m− ε,M ] .
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Integrating by parts in the Riemann-Stieltjes integral, we also have

∫ M

m−ε

〈Etx, y〉 d (f (t) g (t))(5.8)

= 〈Etx, y〉 (f (t) g (t))|Mm−ε −

∫ M

m−ε

f (t) g (t) d (〈Etx, y〉)

= f (M) g (M) 〈x, y〉 −

∫ M

m−ε

f (t) g (t) d (〈Etx, y〉)

for any x, y ∈ H.
From (5.7) and (5.8) we then have

f (M) g (M) 〈x, y〉 −

∫ M

m−ε

f (t) g (t) d (〈Etx, y〉)(5.9)

=

∫ M

m−ε

〈Etx, y〉 f (t) d (g (t)) +

∫ M

m−ε

〈Etx, y〉 g (t) d (f (t))

for any x, y ∈ H and ε > 0.
(i). If f and g are of bounded variation, then by (5.9) we have

∣

∣

∣

∣

∣

f (M) g (M) 〈x, y〉 −

∫ M

m−ε

f (t) g (t) d (〈Etx, y〉)

∣

∣

∣

∣

∣

(5.10)

≤

∣

∣

∣

∣

∣

∫ M

m−ε

〈Etx, y〉 f (t) d (g (t))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ M

m−ε

〈Etx, y〉 g (t) d (f (t))

∣

∣

∣

∣

∣

≤ sup
t∈[m−ε,M ]

|〈Etx, y〉 f (t)|
M
∨

m−ε

(g) + sup
t∈[m−ε,M ]

|〈Etx, y〉 g (t)|
M
∨

m−ε

(f)

≤ sup
t∈[m−ε,M ]

|〈Etx, y〉| sup
t∈[m−ε,M ]

|f (t)|
M
∨

m−ε

(g)

+ sup
t∈[m−ε,M ]

|〈Etx, y〉| sup
t∈[m−ε,M ]

|g (t)|
M
∨

m−ε

(f)

for any x, y ∈ H and ε > 0.
Taking the limit over ε → 0+ in (5.10) and utilizing the representation (5.3)

we deduce (5.4).
The statements (ii) and (iii) can be proved in a similar way, however the

details are omitted. �
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