• Title/Summary/Keyword: semisimple module

Search Result 14, Processing Time 0.021 seconds

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

SEMISIMPLE ARTINIAN LOCALIZATIONS RELATED WITH V-RINGS

  • Rim, Seog-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.839-847
    • /
    • 1995
  • For the given torsion theory $\tau$, we study some equivalent conditions when the localized ring $R_\tau$ be semisimple artinian (Theorem 4). Using this, if $R_\tau$ is semisimple artinian ring, we study when does the given ring R become left V-ring?

  • PDF

On Injectivity of Modules via Semisimplicity

  • Nguyen, Thi Thu Ha
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.641-655
    • /
    • 2022
  • A right R-module N is called pseudo semisimple-M-injective if for any monomorphism from every semisimple submodule of M to N, can be extended to a homomorphism from M to N. In this paper, we study some properties of pseudo semisimple-injective modules. Moreover, some results of pseudo semisimple-injective modules over formal triangular matrix rings are obtained.

ACTIONS OF FINITE-DIMENSIONAL SEMISIMPLE HOPF ALGEBRAS AND INVARIANT ALGEBRAS

  • Min, Kang-Ju;Park, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • Let H be a finite dimensional Hopf algebra over a field k, and A be an H-module algebra over k which the H-action on A is D-continuous. We show that $Q_{max}(A)$, the maximal ring or quotients of A, is an H-module algebra. This is used to prove that if H is a finite dimensional semisimple Hopf algebra and A is a semiprime right(left) Goldie algebra than $A#H$ is a semiprime right(left) Goldie algebra. Assume that Asi a semiprime H-module algebra Then $A^H$ is left Artinian if and only if A is left Artinian.

  • PDF

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

Weak F I-extending Modules with ACC or DCC on Essential Submodules

  • Tercan, Adnan;Yasar, Ramazan
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.239-248
    • /
    • 2021
  • In this paper we study modules with the W F I+-extending property. We prove that if M satisfies the W F I+-extending, pseudo duo properties and M/(Soc M) has finite uniform dimension then M decompose into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if M satisfies the W F I+-extending, pseudo duo properties and ascending chain (respectively, descending chain) condition on essential submodules then M = M1 ⊕ M2 for some semisimple submodule M1 and Noetherian (respectively, Artinian) submodule M2. Moreover, we show that if M is a W F I-extending module with pseudo duo, C2 and essential socle then the quotient ring of its endomorphism ring with Jacobson radical is a (von Neumann) regular ring. We provide several examples which illustrate our results.

A GENERALIZATION OF MULTIPLICATION MODULES

  • Perez, Jaime Castro;Montes, Jose Rios;Sanchez, Gustavo Tapia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.83-102
    • /
    • 2019
  • For $M{\in}R-Mod$, $N{\subseteq}M$ and $L{\in}{\sigma}[M]$ we consider the product $N_ML={\sum}_{f{\in}Hom_R(M,L)}\;f(N)$. A module $N{\in}{\sigma}[M]$ is called an M-multiplication module if for every submodule L of N, there exists a submodule I of M such that $L=I_MN$. We extend some important results given for multiplication modules to M-multiplication modules. As applications we obtain some new results when M is a semiprime Goldie module. In particular we prove that M is a semiprime Goldie module with an essential socle and $N{\in}{\sigma}[M]$ is an M-multiplication module, then N is cyclic, distributive and semisimple module. To prove these results we have had to develop new methods.

ON A CLASS OF PERFECT RINGS

  • Olgun, Arzu;Turkmen, Ergul
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.591-600
    • /
    • 2020
  • A module M is called ss-semilocal if every submodule U of M has a weak supplement V in M such that U∩V is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring R, RR is ss-semilocal if and only if every left R-module is ss-semilocal if and only if R is semilocal and Rad(R) ⊆ Soc(RR). We define projective ss-covers and prove the rings with the property that every (simple) module has a projective ss-cover are ss-semilocal.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

SMASH PRODUCT ALGEBRAS AND INVARIANT ALGEBRAS

  • Min, Kang Ju;Park, Jun Seok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.173-181
    • /
    • 1995
  • Let H and G be finite dimensional semisimple Hopf algebras and let A and B be left H and G-module algebras respectively. We use smash product algebras to show that 1) if A is right Artinian then $A^H$ is right Artinian, 2) $Soc\;V_A{\subset}Soc\;V_{A^H}$ and rad $V_A{\supset}\;radV_{A^H}$, 3) $K\;dim\;_BV_A=K\;dim\;_{B^G}V_{A^H}$.

  • PDF