SEMISIMPLE ARTINIAN LOCALIZATIONS RELATED WITH V-RINGS

SEGG-HOON RIM

ABSTRACT. For the given torsion theory τ , we study some equivalent conditions when the localized ring R_{τ} be semisimple artinian (Theorem 4). Using this, if R_{τ} is semisimple artinian ring, we study when does the given ring R become left V-ring?

1. Preliminaries

Throughout the following R will denote an associative ring with non-zero unit element, and R-Mod will denote the category of all left R-modules.

Notation and terminology concerning (hereditary) torsion theories on R-Mod will follow ([7]). In particular, if τ is a torsion theory on R-Mod, for a given left R-module M, we denote by $\tau(M)$ the unique largest submodule of M which is τ -torsion. If E(M) is the injective hull of a left R-module M then we define the submodule $E_{\tau}(M)$ of E(M) by $E_{\tau}(M)/M = \tau(E(M)/M)$. The module of quotients of M with respect to τ , denoted by $Q_{\tau}(M)$, is then defined to be $E_{\tau}(M/\tau(M))$. Note that, in particular, if M is τ -torsionfree then $Q_{\tau}(M) = E_{\tau}(M)$, and this is a left R-module containing M as a large submodule. In general, we have a canonical R-homomorphism from M to $Q_{\tau}(M)$ obtained by composing the canonical surjection from M to $M/\tau(M)$ with the inclusion map into $Q_{\tau}(M)$.

If R_{τ} is the endomorphism ring of the left R-module $Q_{\tau}(R)$ then $Q_{\tau}(M)$ is canonically a left R_{τ} -module for every left R-module M and

Received August 1, 1995. Revised September 28, 1995.

¹⁹⁹¹ AMS Subject Classification: 16D60 (16D50, 16N).

Key words: semisimple artinian localizations V-ring, semicocritical module, linked, Goldie ring, semimaximal prime torsion Theory.

This paper was supported in part by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1993.

the canonical map $R \longrightarrow R_{\tau}$ is a ring homorphism, the ring R_{τ} is called the ring of quotients or localization of R at τ . A torsion theory on RMod is said to be faithful if and only if R, considered as a left module over itself, is τ -torsionfree. In this case, R is canonically subring of R_{τ} .

A submodule N of M is called τ -closed (τ -dense) in M if M/N is τ -torsionfree (τ -torsion). A module M is called τ -cocritical if it is τ -torsion free, but every proper homomorphic image of it is τ -torsion. A module M will be called τ -semicocritical if there exists a finite set K_1, K_2, \dots, K_n of submodules of M such that $\bigcap_{i=1}^n K_i = 0$ and M/K_i is τ -cocritical for each $i = 1, 2, \dots, n$. This concept is closely related to the idea of an α -critical module in the study of Krull dimension ([2]). If M is cocritical (resp. semicocritical) with respect to the torsion theory cogenerated by the injective hull of M, it is simply called cocritical (resp. semicocritical). Any module that is τ -cocritical (resp. τ -semicocritical) for some τ is necessarily a cocritical (resp. semicocritical). (cf. [10] or [11])

A module M is τ -artinian if it has descending chain conditions on τ -closed submodules. R is called τ -artinian (resp. $(\tau$ -) cocritical, $(\tau$ -semicocritical) if it is τ -artinian (resp. $(\tau$ -) cocritical, $(\tau$ -) semicocritical) as an R-module.

If X is a subset of an R-module, then $ann_R(X)$ will denote the elements of R that annihilate the set X. (If there is no chance for confusion, the R will not be written.) A module M is called finitely annihilated if ann(M) equals the annihilator of a finite subset of M. Observe that M is finitely annihilated if and only if there exists an embedding of R/ann(M) into a finite direct sum of copies of M. A module M is called Δ -module if M has the DCC on annihilators of subsets of M.

We will use the following result several times.

LEMMA 1. ([11], Proposition 4.5) Let M be τ -torsionfree and τ -artinian. Then the following statements are equivalent.

- (1) R/annM is left τ -artinian.
- (2) M is finitely annihilated.
- (3) M is Δ -module.

Finally, for any module M, $\chi(M)$ will denote the torsion theory cogenerated by E(M); i.e., the largest torsion theory for which M is torsionfree.

Recall that a torsion theory τ is called perfect if all the R_{τ} modules are τ -torsion free. For such torsion theories we have $Q_{\tau}(M) \simeq Q_{\tau}(R) \otimes_{R} M$ for every $M \in R$ -Mod. Many characterizations of perfect torsion theories are known (cf. [7] Proposition 45.1)

One result we will need is that if R_{τ} is a semisimple ring, then τ is a perfect torsion theory [[8], Proposition 2.3].

2. Semisimple Artinian Localizations

We characterize those torsion theories τ for which the ring of quotients R_{τ} is a semisimple ring (i.e., a direct sum of rings each of which is a finite matrix ring over a division ring). Teply and Shapiro characterized R_{τ} to be semisimple in [9], we have more characterizations involves the existence of certain semicocritical modules.

An ideal of R is called τ -primitive if it is the annihilator of a τ -cocritical module, while the intersection of such ideals is called a τ -semiprimitive ideal. We note that the annihilator of any nonzero τ -semicocritical module is τ -semiprimitive ideal (cf. [11], Lemma 2.1).

We say the ring R is τ -primitive (τ -semiprimitive) if the zero ideal is τ -primitive (respectively τ -semiprimitive). If R is τ -primitive (resp. τ -semiprimitive), then it embeds in a (possibly infinite) power of a τ -cocritical (resp. τ -semicocritical) module. Hence R must be τ -torsionfree.

For information on τ -primite (or τ -semiprimitive) ideals the reader may refer to [7] or [12].

In order to study when R_{τ} is semisimple artinian ring, as indicated in [9], one has to wory about the existence of homomorphisms between modules of the form E(M) and E(N), where M and N are nonisomorphic simple modules. This is something that can not happen when R is a commutative artinian ring.

Given a torsion theory τ such that R_{τ} is simple artinian, there exists a unique (up to isomorphism) indecomposable, injective τ -torsionfree module E. We will call this the associated injective of τ . Given two such torsion theories τ_1 and τ_2 we will say they are linked if, either $\text{Hom}(E_1, E_2) \neq 0$ or $\text{Hom}(E_2, E_1) \neq 0$, where E_i is the associated injective of τ_i . If they are not linked, we will say they are unlinked. We can findout in [9] or [11] for a discussion of such links.

If τ_1 and τ_2 are two torsion theories, then their intersection, denoted $\tau_1 \wedge \tau_2$, is the torsion theory in which a module is torsion if and only if it is torsion with respect to both τ_1 and τ_2 . We also use the following two Lemmas frequently.

LEMMA 2. ([1] and [10]) If R is τ -artinian, then we have the following;

- (1) There are only finitely many non-isomorphic indecomposable injective τ -torsionfree modules E_1, E_2, \dots, E_n .
 - (2) $\tau = \chi(RE(R/\tau(R))).$
- (3) Let $\tau_i = \chi(E_i)$, where each E_i appears in (1) then each τ_i is unlinked.

PROOF. (1) [Teply, [11] Remark 3.4]

- (2) [Benander, [2] Theorem 4.3(4)]
- (3) If there is a map $f: E_i \longrightarrow E_j, i \neq j$ clearly this is not monic. But then $E_i/\ker f$ is τ -torsion, as E_i is τ -cocritical so f = 0.

LEMMA 3. ([11] Proposition 1.1) A module M is τ -semicocritical if and only if the following condition hold:

- (1) M is τ -artinian
- (2) M is τ -torsionfree
- (3) M/N is τ -torsion, if N is essential in M.

THEOREM 4. Let τ be a torsion theory on R-Mod, then the following statements are equivalent.

- (1) R_{τ} is a semisimple artinian ring.
- (2) R is τ -atinian and $\tau(R)$ is τ -semiprimitive.
- (3) $\tau = \tau_1 \wedge \cdots \wedge \tau_n$, where each R_{τ_i} is simple artinian and the set $\{\tau_1, \dots, \tau_n\}$ is pairwise unlinked.
- (4) There exists a semicocritical, finitely annihilated, injective R-module E with $\chi(E) = \tau$.
- (5) There exists a semicocritical module M such that $\chi(M) = \tau$, M is finitely annihilated and ann(M) = ann(E(M)).

PROOF. The equivalences of (1), (2) and (3) are in [[9], Theorem 1.2]. (1) \longrightarrow (4). Since R_{τ} is semisimple artinian ring, τ is a perfect torsion theory; so τ is cogenerated by the R_{τ} -modules that are

the injective hulls of semisimple artinian R_{τ} -modules (when considered as left R-modules). Since R_{τ} is artinian and τ is perfect torsion theory, R is τ -artinian. By Lemma 2 (1), there are only finitely many non-isomorphic indecomposable injective τ -torsionfree modules, which we call E_1, E_2, \dots, E_n . Note that each E_i is an injective, simple R_{τ} -module. Let $E = E_1 \oplus E_2 \oplus \dots \oplus E_n$, so if $\tau_i = \chi(E_i)$ we see that $\tau = \chi(E) = \tau_1 \wedge \tau_2 \wedge \dots \wedge \tau_n$. And each E_i is an injective τ -cocritical R-module, thus E is a τ -semicocritical R-module.

Note that E is τ -torsionfree and τ -artinian and R/ann(E) is τ -artinian also (since R/ann(E) is a homomorphic image of τ -artinian ring R). Now apply Lemma 1, we have that E is finitely annihilated.

(4) \longrightarrow (5). This is immediate. (5) \longrightarrow (2) Let M be a semicocritical module, and let $I = ann_R(M)$ which is $\tau = \chi(M)$ -semiprimitive by [14, Lemma 4.1.]. Since M is finitely annihilated, R/I can be embedded in M^n for some integer n. Thus R/I is τ -torsionfree (since M is τ -semicocritical). So $\tau(R) \subseteq I$. Now let $f: I \longrightarrow E(M)$. Extend f to a map $g: R \longrightarrow E(M)$. But g(I) = Ig(1) = 0 since ann(M) = ann(E(M)). Thus I is τ -torsion. So $\tau(R) = I$ which implies that $\tau(R)$ is τ -semiprimitive. Since M^n is τ -artinian, so is R.

3. Semisimple Artinian Localizations and V-rings

Recall that a ring R is a V-ring if all the simple R-modules are injective. For commutative rings the following conditions are well known to be equivalent: i) R_p is a field for every maximal ideal P; ii) R is fully idempotent (i.e., every ideal is idempotent); iii) R is a von Neumann regular ring; iv) R is a V-ring. It is equally well-known that for noncommutative rings, iii) or iv) imply ii), but that there are no other implications. For a general discussion of the relationship between the last three condition can be found in [6]. Teply and Shapiro proved that i) and ii) imply iv), also i) and iv) imply that every ideal of R is the intersection of maximal ideals under the condition that R_{τ} is simple artinian ring and certain torsion theory τ . Still we are able to get more general results related with V-rings under the condition that R_{τ} is semisimple artinian and suitable torsion theory τ .

Follow the idea of [8], we will call τ a maximal prime (resp. semi-maximal prime) torsion theory if $\tau = \chi(M)$, where M is simple (resp.

semisimple artinian) module. Note that maximal prime torsion theories on R-Mod are semimaximal prime.

LEMMA 5. Let τ be a torsion theory and R_{τ} be semisimple artinian ring, then $R/\tau(R)$ is non-singular ring.

PROOF. Since τ is perfect torsion theory and R_{τ} is artinian, we see that homomorphic image $\bar{R} = R/\tau(R)$ is τ -artinian. We know that τ induces a torsion theory $\bar{\tau}$ on $R/\tau(R)$ -Mod as follows; $\bar{R}M$ is $\bar{\tau}$ -torsion if RM is τ -torsion. We can prove that $R/\tau(R)$ is $\bar{\tau}$ -semicocritical, thus $\bar{\tau}$ is a generalization of Goldie torsion theory. Thus $\bar{\tau}$ -torsionfree left \bar{R} -module $R/\tau(R)$ is Goldie torsionfree i.e., $R/\tau(R)$ is non-singular ring.

PROPOSITION 6. Assume that R_{τ} is a semisimple artinian ring for every semimaximal prime torsion theory τ . Futhermore assume that each pair of semimaximal torsion theories is unlinked. Then $R/\tau(R)$ is a finite product of simple left V-rings.

PROOF. Since τ is perfect torsion theory and R_{τ} is artinian, we see that R is τ -artinian. We know that τ induces a torsion theory $\bar{\tau}$ on $\bar{R} = R/\tau(R)$ as in the Lemma 5. From the fact that $Q_{\tau}(M)$ is a module over R_{τ} and hence a module over $\bar{R} = R/\tau(R)$. Thus we can write $\bar{R}_{\bar{\tau}} = \bar{R}_{\tau} = R_{\tau}$.

Now by Lemma 2, $\tau = \chi(RE(R))$. Letting $\gamma = \chi(E(RR))$, we have that $\tilde{\tau} = \chi(RR) = \gamma$. Since $\tilde{R}_{\tilde{\tau}} = R_{\tau}$. Thus R_{τ} is the maximal ring of quotients of \tilde{R} , which is non-singular ring. So we have that \tilde{R} is an order in a semisimple artinian ring.

Now we want to show that R is left V-ring. Let E be the injective hull of a simple module S and let $\pi = \chi(E)$. π is a semimaximal prime torsion theory, so \tilde{R}_{π} is semisimple artinian ring. By Theorem 4. E must be a semicocritical module, but in here E is cocritical module. Let H be a nonzero submodule of E. Since the semimaximal prime torsion theories are unlinked, then $\operatorname{Hom}(E/H, E') = 0$ for any injective hull of a semisimple module. This can only happen if H = E. Thus E is a simple module, which proves that \tilde{R} is a left V-ring. Now by ([5], Theorem 7.36 A), \tilde{R} is a finite product of simple left V-rings.

COROLLARY 7. Under the same hypothesis of Proposition 6, $R/\tau(R)$ is finite direct sum of simple Goldie left V-rings.

PROOF. Since $R/\tau(R)$ is Goldie ring, now apply ([3], 5.16), we have the result.

COROLLARY 8. Assume that R_{τ} is a simple artinian ring for every maximal prime torsion theory τ . Furthermore assume that each pair of maximal torsion theory is unlinked. Then $R/\tau(R)$ is a simple Goldie left V-ring.

PROPOSITION 9. Assume that R_{τ} is semisimple artinian for every semimaximal prime torsion theory τ . Then every factor ring of R also has this property.

PROOF. Let $\bar{R}=R/I$ be an arbitrary factor ring of R and let M be a semisimple artinian \bar{R} -module. Then M is also semisimple artinian R-module. If $\tau=\chi(_RM)$, then the torsion theory $\bar{\tau}$ on \bar{R} -Mod, which we denote $\bar{\tau}$ is $\chi(_{\bar{R}}M)$. If $E=E_R(M)$, then we know that $E_{\bar{R}}(M)=\{x\in E|Ix=0\}$. Since $_RE$ is semicocritical module. Furthermore \bar{R} is τ -artinian, as it is a homomorphic image of R. Thus \bar{R} is $\bar{\tau}$ -artinian. By Lemma 1, $E_{\bar{R}}(M)$ finitely annihilated as left \bar{R} -module. Therefore by Theorem 4, $\bar{R}_{\bar{\tau}}$ is semisimple artinian.

PROPOSITION 10. Assume that R_{τ} is semisimple artinian for every semimaximal prime torsion theory τ . If I is a semiprimitive ideal of R, then R/I is left artinian (so I must be the intersection of maximal ideals)

PROOF. By Proposition 9, we can replace R/I with R and assume that R is a semiprimitive ring. Let M be a faithful semisimple R-module and let $\tau = \chi(M)$.

Then R is τ -torsionfree, since R embeds in a product of copies of M. Since R_{τ} is artinian and τ is perfect torsion theory, R is τ -artinian. Thus $R/ann_R(M)$ is τ -artinian as an homomorphic image of R. By Lemma 1, RM is finitely annihilated; i.e., R embeds in M^n for some positive integer n. Since M is semisimple artinian, so is M^n . We have the result.

PROPOSITION 11. Let R be a left V-ring such that R_{τ} is a semisimple artinian ring for every semimaximal prime torsion theory τ . Then every ideal of R is the intersection of maximal ideals of R.

PROOF. Let M be a semisimple artinian module, and $\tau = \chi(M)$. Since R is a left V-ring, M is also injective as finite direct sum of injective modules. Clearly $\tau(R)$ is τ -semiprimitive and must equal to the annihilator of M (or E(M)) (in the proof $(4) \longrightarrow (5)$ in Theorem 4). And $R/\tau(R)$ embeds in M^n for some finite integer n. Thus $\tau(R)$ is the intersection of maximal ideals by Proposition 9. Use the unlinkedness of semimaximal prime torsion theories, we have that $\cap \tau(R) = 0$ as τ through all the semimaximal prime torsion theories. So O is a semimaximal ideal. Consequently, by Proposition 10 and the fact that factor rings of left V-rings are again left V-rings, every ideal of R is semimaximal.

References

- 1. Benander, B. A., Finite σ -length and σ -artinian rings, Comm. in Algebra 13(6) (1985).
- Boyle, A. K. and Kosler, K. A., Localization at Collections of Minimal Primes, J. of Algebra 119 (1988), 147-161.
- 3. Cozzens, J and Faith, C., Simple Noetherian Rings, Cambridge University Press (1975).
- Faith, C., Modules finite over endomorphism ring, Lecture Notes in Math., No. 246, Springer-Verlag, Berlin, 1972.
- Faith, C., Algebra: Rings, Modules and Categories I, Springer-Verlag, New York, 1973.
- Fisher, J., Von Newman regular rings versus V-rings, Ring Theory, Marcel Dekker (1974), 101-119.
- Golan, J. S., Torsion Theories, Pitman Monographs and Surveys in Pure and Appl. Math. 29. Longman, 1986.
- 8. Helzer, G., On divisible and injectivity, Canad. J. Math. 18 (1966), 901-919.
- Shapiro, J and Teply, M., Semisimple localizations and V-rings, Comm. in Algebra 16(8) (1988), 1673-1688.
- Stenstrom, B., Rings of Quotients, No. 217, Springer-Verlag, Berlin/New York, 1975.
- 11. Teply, M., Modules semicocritical with respect to a torsion theory and their applications., Israel J. Math. 54 (1986), 181-200.
- Teply, M., Semicocritical Modules, University of Murcia Publications, Murcia, Spain, 1987.
- Zelmaowitz, J.M., Semisimple rings of quotients, Bull. Austral. Math. Soc., Vol. 19 (1978), 97–415.

14. Zelmanowitz, J.M., Representation of rings with faithful monoform modules, J. London Math. Soc (2) 29 (1984), 237-248.

Department of Mathematics Teachers College Kyungpook National University Taegu, 702-701, Korea