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SEMISIMPLE ARTINIAN LOCALIZATIONS
RELATED WITH V-RINGS

SEoG-HoonN RIM

ABSTRACT. For the given torsion theory 7, we study some equivalent
conditions when the localized ring R, be semisimple artinian { Theorem
4). Using this, if R, is semisimple artinian ring, we study when does
the given ring R become left V-ring?

1. Preliminaries

Throughout the following R will denote an associative ring with non-
zero unit element, and R-Mod will denote the category of all left R-
modules.

Notation and terminology concerning (hereditary) torsion theories on
R-Mod will follow ([7]). In particular, if 7 is a torsion theory on R-Mod,
for a given left R-module A, we denote by (M) the unique largest
submodule of M which is 7-torsion. If E(M) is the ijective hull of
a left R-module M then we define the submaodule E (M) of E(M) by
E:(M)/M = r(E(M)/M). The module of quotients of M with respect
to 7, denoted by Q. (M), is then defined to be E.(M/7(M)). Note that,
in particular, if M is r-torsionfree then Q, (M) = E-(M). and this is a
left R-module containing M as a large submodule. In general, we have a
canonical R-homomorphism from M to Q,(A1) obtained by composing
the canonical surjection from M to M /7(Af) with the inclusion map into
Q.(M).

If R, is the endomorphism ring of the left R-module Q- (rR) then
@-(M) is canonically a left R,-module for every left R-module M and
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the canonical map R — R, is a ring homorphism, the ring R, is called
the ring of quotients or localization of R at 7. A torsion theory on R-
Mod is said to be faithful if and only if R, considered as a left module
over itself, is T-torsionfree. In this case, R is canonically subring of R;.

A submodule N of M is called 7-closed (r-dense) in M if M/N is
r-torsionfree (7-torsion). A module A is called r-cocritical if it is 7-
torsion free, but every proper homomorphic image of it is 7-torsion.
A module M will be called 7-semicocritical if there exists a finite set
Ki,IG,- -+, K, of submodules of M such that N, K; = 0 and M/K;
is T-cocritical for each i = 1,2,--- ,n. This concept is closely related to
the idea of an a-critical module in the study of Krull dimension ({2]). If
M is cocritical (resp. semicocritical) with respect to tie torsion theory
cogenerated by the injective hull of A, it is simply called cocritical (resp.
semicocritical). Any module that is r-cocritical (resp. 7-semicocritical)
for some 7 is necessarily a cocritical (resp. semicocritical). (cf. [10] or
[11])

A module A is 7-artinian if it has descending chuin conditions on
7-closed submodules. R is called r-artinian (resp. (+-) cocritical, (7-
semicocritical) if it is 7-artinian (resp. (7-) cocritical, (7-) semicocritical)
as an R-module.

If X is a subset of an R-module, then anng(X') will denote the ele-
ments of R that annihilate the set X' (If there is no chaace for confusion,
the R will not be written.) A module A{ is called finitely annihilated if
ann(M ) equals the annihilator of a finite subset of M. Observe that M is
finitely annihilated if and only if there exists an embedding of R/ann( )
into a finite direct sum of copies of A7. A module A is called A-module
if M has the DCC on annihilators of subsets of M.

We will use the following result several times.

LEMMA 1. ([11], Proposition 4.5) Let M be 7-torsionfree and 7-
artinian. Then the following statements are equivalent.

(1) R/ann{ is left r-artinian.

(2) M is finitely annihilated.

(3) M is A-module.

Finally, for any module M, (M) will denote the torsion theory co-
generated by E(AM); i.e., the largest torsion theory for which M 1s tor-
sionfree.



Semisimple artinian Localizations refated with V-rings 841

Recall that a torsion theory 7 is called perfect if all the R, modules are
7-torsion free. For such torsion theories we have Q-(M) ~ Q. (R)®p M
for every M € R-Mod. Many characterizations of perfect torsion theories
are known (cf. [7] Proposition 45.1)

One result we will need is that if R, is a semisimple ring, then 7 is a
perfect torsion theory [[8], Proposition 2.3].

2. Semisimple Artinian Localizations

We characterize those torsion theories 7 for which the ring of quotients
R, is a semisimple ring (i.e, a dircct sum of rings each of which is a
finite matrix ring over a division ring). Teply and Shapiro characterized
R; to be semisimple in [9], we have more characterizations involves the
existence of certain semicocritical modules.

An ideal of R is called 7-primitive if it is the annihilator of a 7-
cocritical module, while the intersection of such ideals is called a -
semiprimitive ideal. We note that the annihilator of any nonzero r-
semicocritical module is T-semiprimitive ideal (-f. [11], Lemma 2.1).

We say the ring R is 7-primitive (7-semiprimitive) if the zero ideal
is T-primitive (respectively 7-semiprimitive). Iff R is 7-primtive (resp.
T-semiprimitive), then it embeds in a (possibly infinite) power of a 7-
cocritical (resp. 7-semicocritical) module. Hence R must be 7-torsionfree.

For information on 7-primite (or 7-semiprimitive) ideals the reader
may refer to 7] or [12].

In order to study when R, is setnisimple artinian ring, as indicated
in [9], one has to wory about the existence of homomorphisms between
modules of the form E(A) snd E(N). where A and N are nonisomorphic
simple modules. This is something that can not happen when R is a
commutative artinian ring.

Given a torsion theory 7 such that R, is simple artinian, there exists
a unique (up to isomorphism) indecomposable, injective 7-torsionfree
module E. We will call this the associated injective of 7. Given two
such torsion theories 71 and 7 we will say they are linked if, either
Hom(E1, Ez) # 0 or Hom(E,, E ) # 0, where E, is the associated injec-
tive of 7;. If they are not linked, we will say they are unlinked. We can
findout in [9] or [11] for a discussion of such links.
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If 71 and 7 are two torsion theories, then their intersection. denoted
71 A T2, is the torsion theory in which a module is torsion if and only if
it 1s torsion with respect to both 7y and . We also use the following
two Lemmas frequently.

LEMMA 2. ([1] and [10]) If R is 7-artinian. then we have the following;

(1) There are only finitely many non-isomorphic iadecomposable in-
Jective T-torsionfree modules E,, FE,,--- | E,,.

(2) 7 = \(RE(R/T(R)).

(3) Let 7i = \(E;), where each E, appears in (1) then each 7 is
unlinked.

PRrRoOOF. (1) [ Teply, [11] Remark 3.4 ]

(2) [Benander, [2] Theorem 4.3(4)]

(3) If there is a map f : E; — E;.i # j clearly this is not monic.
But then E;/kerf is r-torsion, as E; is 7-cocritical s¢ f = 0.

LEMMA 3. ([11] Proposition 1.1) A module M is 7-semicocritical if
and only if the following condition hold:

(1) M is r-artinian
(2) M is T-torsionfree
(3) M/N is r-torsion, if N is essential in M.

THEOREM 4. Let 7 be a torsion theory on R-Mod, then the following
statements are equivalent.

(1) R+ is a semisimple artinian ring.

(2) R is 7-atinian and 7(R) is r-semiprimitive.

(3) 7 =71 A< A1y, where ecach R;, is simple artinian and the set
{r,--- ,Tr} s pairwise unlinked.

(4) There exists a semicocritical. finitely annihilated. injective R-
module E with \(E) = 7.

(5) There exists a semicocritical module M such that \ (M) = 7, A
is finitely annihilated and ann(A) = ann(E(M)).

Proor. The equivalences of (1), (2) aud (3) are in [[9], Theorem
1.2]. (1) — (4). Since R, is semisimple artinian ring, T is a per-
fect torsion theory; so 7 is cogencrated by the Rr-modules that are



Semisimple artinian Localizatious relatec with V-rings 843

the injective hulls of semisimple artinian R,-modules (when considered
as left R-modules). Since R, is artinian and r is perfect torsion the-
ory, R is r-artinian. By Lemma 2 (1), there are only finitely many
non-isomorphic indecomposable injective 7-torsionfree modules, which
we call E1,E;,--- | E,. Note that each E; is an injective, simple R.-
module. Let E = By $ Ey % - E,. soif rj = \(Ei) we see that
T=x(E)=7n AT A--AT1, Andeach E; is an injective T-cocritical
R-module, thus E is a 7-semicocritical R-module.

Note that E is 7-torsionfree and 7-artinian and R/ann(E) is 7-artinian
also (since R/ann(E) is a homomorphic image of r-artinian ring R). Now
apply Lemma 1, we have that F is finitely annihilated.

(4) — (5). This is immediate. (5) — (2) Let M be a semicocritical
module,and let I = anng(M) which is 7 = \ (A )-semiprimitive by [14,
Lemma 4.1.]. Since M is finitely annihilated, R/I can be embedded
mm M™ for some integer n. Thus R/I is t-toisionfree (since M is 7-
semicocritical). So 7(R) C I. Now let f : I — E(M). Extend f
toamap g : R — E(M). But g(I) = Ig(1l) = 0 since ann(M) =
ann(E(M)). Thus I is r-torsion. So 7(R) = I hich implies that r(R)

1s 7-semiprimitive. Since A" is r-artinian, so is R.

3. Semisimple Artinian Localizations and V-rings

Recall that a ring R is a V-ring if all the simple R-modules are in-
Jective. For commutative rings the following conditions are well known
to be equivalent: 1) R, is a field for every maximal ideal P; 1) R is
fully idempotent (i.e., every ideal is idempoten:); iii) R is a von Neu-
mann regular ring; iv) R is a Vring. It is equelly well-known that for
noncommutative rings, ii) or iv) imply ii), but that there are no other
implications. For a general discussion of the relationship between the
last three condition can be found in [6]. Teply aud Shapiro proved that
1) and ii) imply iv), also i) and iv) imply that every ideal of R is the inter-
section of maximal ideals under the condition that R, is simple artinian
ring and certain torsion theory 7. Still we are able to get more general
results related with -rings under the conditior that R, is semisimple
artinian and suitable torsion theory 7.

Follow the idea of [8], we will call 7 a maximal prime (resp. semi-
maximal prime) torsion theory if v = \(Af). where Al is simple (resp.
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semisimple artinian) module. Note that maximal prime torsion theories
on R-Mod are semimaximal prime.

LEMMA 5. Let 7 be a torsion theory and R, be semisimple artinian
ring, then R/7(R) is non-singular ring.

PROOF. Since 7 is perfect torsion theory and R, is artinman, we see
that homomorphic image R = R/7(R) is r-artinian. We know that 7
mduces a torsion theory 7 on R/7(R)-Mod as follows: rM 1s T-torsion
if gM is r-torsion. We can prove that R/7(R) is T-semicocritical, thus
T is a generalization of Goldie torsion theory. Thus 7-torsionfree left
R-module R/7(R)is Goldie torsionfrec i.c.. R/7(R) i+ non-singular ring.

PROPOSITION G. Assume that R. is a semisimple artinian ring for
every semimaximal prime torsion theory r. Futhermore assume that
each pair of semimaximal torsion theories is unlinked. Then R/7(R) 1s
a finite product of simple left 1 -rings.

PROOF. Since 7 is perfect torsion theory and Ry is artinian, we see
that R is r-artinian. We know that 7 induces a torsion theory 7 on
R = R/7(R) as in the Lemma 5. From the fact that Q-(A) 1s a module
over B, and hence a module over R = R/7(R). Thus we can write
Ri— = RT = R-,—.

Now by Lemma 2, 7 = \(rE(R)). Letting v = \ E(pR)), we have
that 7 = \(pRR) = 5. Since Ry = R,. Thus R: is the maximal ring of
quotients of R, which is non-singular riug. So we have that R is an order
in a semisimple artinian ring.

Now we want to show that R is left V-ring. Let £ be the injective
hull of a simple module S and let # = \(E). 7 is a scmimaximal prinie
torsion theory. so R, is semisimple artinian ring. By Theorem 4. E
must be a semicocritical module, but in here E is coer tical module. Let
H be a nonzero submodule of E. Siuce the semimaxi nal prime torsion
theories are unlinked. then Hom(E/H. E') = 0 for any yjective hull of a
semisimple module. This can only happen if H = E. Thus E is a simple
module, which proves that R is a left V-ring. Now by ([5], Theorem 7.36
A), R is a finite product of simple left 1 -rings.
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COROLLARY 7. Under the same hypothesis of Proposition 6, R/7(R)
is finite direct sum of simple Goldie left V-rings.

PROOF. Since R/7(R) is Goldie ring, now «pply ([3], 5.16), we have
the result.

COROLLARY 8. Assume that R, is a simple artinian ring for every
maximal prime torsion theory 7. Furthermore assume that each pair of
maximal torsion theory is unlinked. Then R/7(R) is a simple Goldie left
V-ring.

PROPOSITION 9. Assume that R, is semisimple artinian for every
semimaximal prime torsion theory . Then every factor ring of R also
has this property.

PROOF. Let R = R/I be an arbitrary factor ring of R and let A be
a semisimple artinian R-module. Then A is also semisimple artinian
R-module. If 7 = y(rM), then the torsion theory 7 on R-Mod, which
we denote 7 is x(pM). If E = Eg(A/), then we know that Eg(M) =
{z € E|Iz = 0}. Since grE is semicocritical module. Furthermore R is
T-artinian, as it is a homomorphic image of R. Thus R is 7-artinian. By
Lemma 1, Ep(M) finitely annihilated as left f-module. Therefore by
Theorem 4, R: is semisimple artinian.

PROPOSITION 10. Assume that R, is semisimple artinian for every
semimaximal prime torsion theory 7. If I is a semiprimitive ideal of R,
then R/I is left artinian (so I must be the intersection of maximal ideals)

PROOF. By Proposition 9, we can replace /2/I with R and assume
that R is a semiprimitive ring. Let A be a faithiul semisimple R-module
and let 7 = y(A).

Then R is 7-torsionfree, since R embeds in a product of copies of M.
Since R, is artinian and 7 is perfect torsion theory, R is r-artinian. Thus
R/annp(M) is T-artinian as an homomorphic image of R. By Lemma
1, RM is finitely annihilated; i.e., R embeds ia M" for some positive
integer n. Since M is semisimple artinian, so is A", We have the result.
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PROPOSITION 11. Let R be a left Vi-ring such that R, is a semisimple
artinian ring for every semimaximal prime torsion theory . Then every
ideal of R is the intersection of maximal ideals of R.

PROOF. Let M be a semisimple artinian module, and 7 = X(M).
Since R is a left V-ring, M is also mjective as finite direct sum of in-
Jective modules. Clearly 7(R) is T-semiprimitive and must equal to the
annihilator of M (or E(M)) (in the proof (4) — (3) in Theorem 4).
And R/7(R) embeds in A/™ for some finite integer n. Thus 7(R) is the
intersection of maximal ideals by Proposition 9. Use the unlinkedness
of semimaximal prime torsion theories. we have that N7(R) = 0 as 7
through all the semimaximal prime torsion theories. So O is a semimax-
imal ideal. Consequently, by Proposition 10 and the fact that factor rings
of left V-rings are again left Verings. every ideal of R is semimaximal.
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